ON THE ROOTS OF ORTHOGONAL POLYNOMIALS AND EULER-FROBENIUS POLYNOMIALS

被引:6
|
作者
DUBEAU, F [1 ]
SAVOIE, J [1 ]
机构
[1] COLL MIL ROYAL ST JEAN,DEPT MATH,RICHELIEU,PQ J0J 1R0,CANADA
关键词
D O I
10.1006/jmaa.1995.1399
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Interlacing properties of the roots of the polynomials P-n(x) and P-n+1(x) and P-n(x) and P-n+2(x) are obtained for sequences of polynomials generated recursively by the scheme: P-0(x) = x(l) (l a nonnegative integer) and c(n+1)/P-n+1(x) = -2r(n)xP(n)(x) + (1 - x(2))DPn(x). Ultraspherical polynomials and Euler-Frobenius polynomials are examples of such sequences. We obtain similar results for Hermite like polynomials obtained by the scheme: H-0(x) = x(l) (l a nonnegative integer) and H-n+1(x) = -2xH(n)(x) + DHn(x). (C) 1995 Academic Press, Inc.
引用
收藏
页码:84 / 98
页数:15
相关论文
共 50 条
  • [21] Umbral Calculus and the Frobenius-Euler Polynomials
    Kim, Dae San
    Kim, Taekyun
    Lee, Sang-Hun
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [22] Orthogonal polynomials and Hankel determinants for certain Bernoulli and Euler polynomials
    Dilcher, Karl
    Jiu, Lin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 497 (01)
  • [23] BERNOULLI AND EULER NUMBERS AND ORTHOGONAL POLYNOMIALS
    CARLITZ, L
    DUKE MATHEMATICAL JOURNAL, 1959, 26 (01) : 1 - 15
  • [24] ONCE MORE ON ROOTS OF EULER POLYNOMIALS
    SOBOLEV, SL
    DOKLADY AKADEMII NAUK SSSR, 1979, 245 (04): : 801 - 804
  • [25] Summation formulas for the products of the Frobenius-Euler polynomials
    He, Yuan
    Araci, Serkan
    Srivastava, H. M.
    RAMANUJAN JOURNAL, 2017, 44 (01): : 177 - 195
  • [26] New formulae of products of the Frobenius-Euler polynomials
    Yuan He
    Sherry J Wang
    Journal of Inequalities and Applications, 2014
  • [27] New formulae of products of the Frobenius-Euler polynomials
    He, Yuan
    Wang, Sherry J.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [28] Remarks on the Frobenius-Euler Polynomials on the Umbral Algebra
    Dere, Rahime
    Simsek, Yilmaz
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 348 - 351
  • [29] Some convolution identities for Frobenius-Euler polynomials
    Jing Pan
    Fengzao Yang
    Advances in Difference Equations, 2017
  • [30] SOME IDENTITIES FOR THE FROBENIUS-EULER NUMBERS AND POLYNOMIALS
    Kim, Taekyun
    Lee, Byungje
    Lee, Sang-Hun
    Rim, Seog-Hoon
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (03) : 544 - 551