ON THE ROOTS OF ORTHOGONAL POLYNOMIALS AND EULER-FROBENIUS POLYNOMIALS

被引:6
|
作者
DUBEAU, F [1 ]
SAVOIE, J [1 ]
机构
[1] COLL MIL ROYAL ST JEAN,DEPT MATH,RICHELIEU,PQ J0J 1R0,CANADA
关键词
D O I
10.1006/jmaa.1995.1399
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Interlacing properties of the roots of the polynomials P-n(x) and P-n+1(x) and P-n(x) and P-n+2(x) are obtained for sequences of polynomials generated recursively by the scheme: P-0(x) = x(l) (l a nonnegative integer) and c(n+1)/P-n+1(x) = -2r(n)xP(n)(x) + (1 - x(2))DPn(x). Ultraspherical polynomials and Euler-Frobenius polynomials are examples of such sequences. We obtain similar results for Hermite like polynomials obtained by the scheme: H-0(x) = x(l) (l a nonnegative integer) and H-n+1(x) = -2xH(n)(x) + DHn(x). (C) 1995 Academic Press, Inc.
引用
收藏
页码:84 / 98
页数:15
相关论文
共 50 条
  • [31] Truncated-exponential-based Frobenius–Euler polynomials
    Wiyada Kumam
    Hari Mohan Srivastava
    Shahid Ahmad Wani
    Serkan Araci
    Poom Kumam
    Advances in Difference Equations, 2019
  • [32] On F-Frobenius-Euler polynomials and their matrix approach
    Urieles, Alejandro
    Ramirez, William
    Perez, H. Luis Carlos
    Ortega, Maria Jose
    Arenas-Penaloza, Jhonatan
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 32 (04): : 377 - 386
  • [33] Some convolution identities for Frobenius-Euler polynomials
    Pan, Jing
    Yang, Fengzao
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [34] AN IDENTITY OF SYMMETRY FOR THE DEGENERATE FROBENIUS-EULER POLYNOMIALS
    Kim, Taekyun
    Kim, Dae San
    MATHEMATICA SLOVACA, 2018, 68 (01) : 239 - 243
  • [35] HIGHER-ORDER BERNOULLI, FROBENIUS-EULER AND EULER POLYNOMIALS
    Kim, Dae San
    Kim, Taekyun
    Seo, Jongjin
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 17 (01) : 147 - 155
  • [36] q-Frobenius-Euler Polynomials Related to the (q-)Bernstein Type Polynomials
    Simsek, Yilmaz
    Acikgoz, Mehmet
    Bayad, Abdelmejid
    Lokesha, V.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1156 - +
  • [37] On the Roots of the Orthogonal Polynomials and Residual Polynomials Associated with a Conjugate Gradient Method
    Manteuffel, Thomas A.
    Otto, James S.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1994, 1 (05) : 449 - 475
  • [38] Some new identities of Frobenius-Euler numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [39] On the generalized Apostol-type Frobenius-Euler polynomials
    Burak Kurt
    Yilmaz Simsek
    Advances in Difference Equations, 2013
  • [40] On the generalized Apostol-type Frobenius-Euler polynomials
    Kurt, Burak
    Simsek, Yilmaz
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,