ON THE ROOTS OF ORTHOGONAL POLYNOMIALS AND EULER-FROBENIUS POLYNOMIALS

被引:6
|
作者
DUBEAU, F [1 ]
SAVOIE, J [1 ]
机构
[1] COLL MIL ROYAL ST JEAN,DEPT MATH,RICHELIEU,PQ J0J 1R0,CANADA
关键词
D O I
10.1006/jmaa.1995.1399
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Interlacing properties of the roots of the polynomials P-n(x) and P-n+1(x) and P-n(x) and P-n+2(x) are obtained for sequences of polynomials generated recursively by the scheme: P-0(x) = x(l) (l a nonnegative integer) and c(n+1)/P-n+1(x) = -2r(n)xP(n)(x) + (1 - x(2))DPn(x). Ultraspherical polynomials and Euler-Frobenius polynomials are examples of such sequences. We obtain similar results for Hermite like polynomials obtained by the scheme: H-0(x) = x(l) (l a nonnegative integer) and H-n+1(x) = -2xH(n)(x) + DHn(x). (C) 1995 Academic Press, Inc.
引用
收藏
页码:84 / 98
页数:15
相关论文
共 50 条
  • [1] THE MAIN ROOTS OF THE EULER-FROBENIUS POLYNOMIALS
    REIMER, M
    JOURNAL OF APPROXIMATION THEORY, 1985, 45 (04) : 358 - 362
  • [2] Sampling zeros and the Euler-Frobenius polynomials
    Weller, SR
    Moran, W
    Ninness, B
    Pollington, AD
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 1471 - 1476
  • [3] Sampling zeros and the Euler-Frobenius polynomials
    Weller, SR
    Moran, W
    Ninness, B
    Pollington, AD
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (02) : 340 - 343
  • [4] SOME QUALITATIVE PROPERTIES OF BIVARIATE EULER-FROBENIUS POLYNOMIALS
    DEBOOR, C
    HOLLIG, K
    RIEMENSCHNEIDER, S
    JOURNAL OF APPROXIMATION THEORY, 1987, 50 (01) : 8 - 17
  • [6] SET OF RATIONAL FUNCTIONS RELATED TO EULER-FROBENIUS POLYNOMIALS
    MULLER, GM
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1975, 6 (06) : 948 - 959
  • [7] Modified Euler-Frobenius Polynomials With Application to Sampled Data Modelling
    Carrasco, Diego S.
    Goodwin, Graham C.
    Yuz, Juan I.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) : 3972 - 3985
  • [8] Euler-Frobenius numbers
    Gawronski, Wolfgang
    Neuschel, Thorsten
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (10) : 817 - 830
  • [9] ROOTS OF EULER POLYNOMIALS
    HOWARD, FT
    PACIFIC JOURNAL OF MATHEMATICS, 1976, 64 (01) : 181 - 191
  • [10] Poly-Frobenius-Euler Polynomials
    Kurt, Burak
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863