FRACTURING DESCRIBED BY A SPRING-BLOCK MODEL

被引:21
|
作者
ANDERSEN, JV
BRECHET, Y
JENSEN, HJ
机构
[1] ENSEEG,LTPCM,F-38402 ST MARTIN DHERES,FRANCE
[2] UNIV LONDON IMPERIAL COLL SCI TECHNOL & MED,DEPT MATH,LONDON SW7 2BZ,ENGLAND
来源
EUROPHYSICS LETTERS | 1994年 / 26卷 / 01期
关键词
D O I
10.1209/0295-5075/26/1/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A spring-block model containing only one parameter, the ratio between the threshold for block slips and the threshold for springs to break, is introduced to study general features of the statics and dynamics of fracturing. We find that a domain growth of positive and negative components of the stress field before cracking sets in is crucial for the pattern formations of the cracks. The domain growth obeys an algebraic growth law. The total number of cracks and the size distribution for crack events have been calculated as a function of the ratio between the threshold for spring breaking and the threshold for block slips, and as a function of time.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 50 条
  • [21] CHAOS IN A SIMPLE SPRING-BLOCK SYSTEM
    VIEIRA, MD
    [J]. PHYSICS LETTERS A, 1995, 198 (5-6) : 407 - 414
  • [22] DYNAMIC PHASES IN A SPRING-BLOCK SYSTEM
    JOHANSEN, A
    DIMON, P
    ELLEGAARD, C
    LARSEN, JS
    RUGH, HH
    [J]. PHYSICAL REVIEW E, 1993, 48 (06) : 4779 - 4790
  • [23] Spring-block models and highway traffic
    Neda, Z.
    Jarai-Szabo, F.
    Kaptalan, E.
    Mahnke, R.
    [J]. CONTROL ENGINEERING AND APPLIED INFORMATICS, 2009, 11 (04): : 3 - 10
  • [24] Regimes of frictional sliding of a spring-block system
    Putelat, Thibaut
    Dawes, Jonathan H. P.
    Willis, John R.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2010, 58 (01) : 27 - 53
  • [25] Spatial and temporal forecasting of large earthquakes in a spring-block model of a fault
    Aragon, L. E.
    Jagla, E. A.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2013, 195 (03) : 1763 - 1772
  • [26] Dynamics of modulated waves in the spring-block model of earthquake with time delay
    I. A. Mofor
    L. C. Tasse
    G. B. Tanekou
    M. D. Wamba
    R. Kengne
    A. Tchagna Kouanou
    M. T. Motchongom
    D. Afungchui
    F. B. Pelap
    T. C. Kofane
    [J]. The European Physical Journal Plus, 138
  • [27] Scaling theory and dimensional arguments for periodic solutions of spring-block model
    Sarkardei, MR
    Jacobs, RL
    [J]. INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2003, 41 (04) : 323 - 330
  • [28] Dynamics of modulated waves in the spring-block model of earthquake with time delay
    Mofor, I. A.
    Tasse, L. C.
    Tanekou, G. B.
    Wamba, M. D.
    Kengne, R.
    Kouanou, A. Tchagna
    Motchongom, M. T.
    Afungchui, D.
    Pelap, F. B.
    Kofane, T. C.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (03):
  • [29] Patterns of synthetic seismicity and recurrence times in a spring-block earthquake model
    Muñoz-Diosdado, A
    Angulo-Brown, F
    [J]. REVISTA MEXICANA DE FISICA, 1999, 45 (04) : 393 - 400
  • [30] DYNAMICAL MEAN-FIELD THEORY FOR A SPRING-BLOCK MODEL OF FRACTURE
    ANDERSEN, JV
    [J]. PHYSICAL REVIEW B, 1994, 49 (14): : 9981 - 9984