Dynamics of modulated waves in the spring-block model of earthquake with time delay

被引:4
|
作者
Mofor, I. A. [5 ]
Tasse, L. C. [4 ,5 ]
Tanekou, G. B. [1 ]
Wamba, M. D. [7 ]
Kengne, R. [2 ]
Kouanou, A. Tchagna [2 ,6 ]
Motchongom, M. T. [3 ]
Afungchui, D. [5 ]
Pelap, F. B. [1 ]
Kofane, T. C. [4 ]
机构
[1] Univ Dschang, Fac Sci, Dept Phys, Unity Res Mech & Modelling Phys Syst, POB 69, Dschang, Cameroon
[2] Univ Dschang, Fac Sci, Dept Phys, Unity Res Condensed Matter, POB 69, Dschang, Cameroon
[3] Univ Bamenda, Higher Teacher Training Coll Bambili, Dept Phys, POB 39, Bambili, Cameroon
[4] Univ Yaounde I, Fac Sci, Lab Mecan, BP 812, Yaounde, Cameroon
[5] Univ Bamenda, Fac Sci, Dept Phys, POB 39, Bamenda, Cameroon
[6] Univ Buea, Coll Technol, Buea, Cameroon
[7] Princeton Univ, Dept Geosci, Princeton, NJ USA
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2023年 / 138卷 / 03期
关键词
COMPLEX DYNAMICS; FRICTION; NUCLEATION;
D O I
10.1140/epjp/s13360-023-03863-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In geological fault modeling, several fragmented blocks are coupled by springs and the motion between them is not transmitted instantly, but with a delay. The dynamics of geological media is investigated by considering the time delay between blocks' deformations. Our modelization led to a complex-Landau equation, from which we derived solitary waves induced by the stick-slip process. A solitary wave propagating along the contact surface between two plates becomes stable or unstable as the time delay varies, thus producing states of solitary wave. The modulational instability of the system is performed, showing that the instability of the amplitude increases with the time delay and the nonlinear parameters. Also, the bandwidth of instability varies with the system parameters. It is shown from our results that the time delay decelerates the propagating soliton.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Dynamics of modulated waves in the spring-block model of earthquake with time delay
    I. A. Mofor
    L. C. Tasse
    G. B. Tanekou
    M. D. Wamba
    R. Kengne
    A. Tchagna Kouanou
    M. T. Motchongom
    D. Afungchui
    F. B. Pelap
    T. C. Kofane
    [J]. The European Physical Journal Plus, 138
  • [2] Nonlinear dynamics of a continuous spring-block model of earthquake faults
    Hahner, P
    Drossinos, Y
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (10): : L185 - L191
  • [3] Complex Dynamics of Spring-Block Earthquake Model Under Periodic Parameter Perturbations
    Kostic, Srdan
    Vasovic, Nebojsa
    Franovic, Igor
    Todorovic, Kristina
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2014, 9 (03):
  • [4] Further seismic properties of a spring-block earthquake model
    Angulo-Brown, F
    Muñoz-Diosdado, A
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 1999, 139 (02) : 410 - 418
  • [5] On the separation of timescales in spring-block earthquake models
    Hergarten, S
    Jansen, F
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2005, 12 (01) : 83 - 88
  • [6] Patterns of synthetic seismicity and recurrence times in a spring-block earthquake model
    Muñoz-Diosdado, A
    Angulo-Brown, F
    [J]. REVISTA MEXICANA DE FISICA, 1999, 45 (04) : 393 - 400
  • [7] ANALYTICAL TREATMENT FOR A SPRING-BLOCK MODEL
    DING, EJ
    LU, YN
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (23) : 3627 - 3630
  • [8] FRACTURING DESCRIBED BY A SPRING-BLOCK MODEL
    ANDERSEN, JV
    BRECHET, Y
    JENSEN, HJ
    [J]. EUROPHYSICS LETTERS, 1994, 26 (01): : 13 - 18
  • [9] HYSTERESIS IN A THEORETICAL SPRING-BLOCK MODEL
    LU, YN
    LIU, WS
    DING, EJ
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (25) : 4005 - 4008
  • [10] Simulation and properties of a non-homogeneous spring-block earthquake model with asperities
    Munoz-Diosdado, Alejandro
    Rudolf-Navarro, Adolfo H.
    Angulo-Brown, Fernando
    [J]. ACTA GEOPHYSICA, 2012, 60 (03): : 740 - 757