False discovery rate paradigms for statistical analyses of microarray gene expression data

被引:29
|
作者
Cheng, Cheng [1 ]
Pounds, Stan [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN 38105 USA
基金
美国国家卫生研究院;
关键词
multiple tests; false discovery rate; q-value; significance threshold selection; profile information criterion; microarray; gene expression;
D O I
10.6026/97320630001436
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The microarray gene expression applications have greatly stimulated the statistical research on the massive multiple hypothesis tests problem. There is now a large body of literature in this area and basically five paradigms of massive multiple tests: control of the false discovery rate (FDR), estimation of FDR, significance threshold criteria, control of family-wise error rate (FWER) or generalized FWER (gFWER), and empirical Bayes approaches. This paper contains a technical survey of the developments of the FDR-related paradigms, emphasizing precise formulation of the problem, concepts of error measurements, and considerations in applications. The goal is not to do an exhaustive literature survey, but rather to review the current state of the field.
引用
下载
收藏
页码:436 / 446
页数:11
相关论文
共 50 条
  • [41] Implementation of False Discovery Rate for Exploring Novel Paradigms and Trait Dimensions With ERPs
    Crowley, Michael J.
    Wu, Jia
    McCreary, Scott
    Miller, Kelly
    Mayes, Linda C.
    DEVELOPMENTAL NEUROPSYCHOLOGY, 2012, 37 (06) : 559 - 577
  • [42] Arabidopsis gene expression changes during cyst nematode parasitism revealed by statistical analyses of microarray expression profiles
    Puthoff, DP
    Nettleton, D
    Rodermel, SR
    Baum, TJ
    PLANT JOURNAL, 2003, 33 (05): : 911 - 921
  • [43] Rank-invariant resampling based estimation of false discovery rate for analysis of small sample microarray data
    Jain, N
    Cho, HJ
    O'Connell, M
    Lee, JK
    BMC BIOINFORMATICS, 2005, 6 (1)
  • [44] Rank-invariant resampling based estimation of false discovery rate for analysis of small sample microarray data
    Nitin Jain
    HyungJun Cho
    Michael O'Connell
    Jae K Lee
    BMC Bioinformatics, 6
  • [45] Optimal False Discovery Rate Control with Kernel Density Estimation in a Microarray Experiment
    Kang, Moonsu
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (03) : 771 - 780
  • [46] A mixture model for estimating the local false discovery rate in DNA microarray analysis
    Liao, JG
    Lin, Y
    Selvanayagam, ZE
    Shih, WCJ
    BIOINFORMATICS, 2004, 20 (16) : 2694 - 2701
  • [47] Evaluation of false discovery rate and power via sample size in microarray studies
    Song, Jie
    Raadsma, HermanW.
    Thomson, Peter C.
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (03) : 489 - 500
  • [48] A Hybrid Approach for Biomarker Discovery from Microarray Gene Expression Data for Cancer Classification
    Peng, Yanxiong
    Li, Wenyuan
    Liu, Ying
    CANCER INFORMATICS, 2006, 2 : 301 - 311
  • [49] Knowledge discovery in gene-expression-microarray data: mining the information output of the genome
    Zweiger, G
    TRENDS IN BIOTECHNOLOGY, 1999, 17 (11) : 429 - 436
  • [50] Gene expression - Quick calculation for sample size while controlling false discovery rate with application to microarray analysis (vol 23, pg 739, 2007)
    Liu, Peng
    Hwang, J. T. Gene
    BIOINFORMATICS, 2008, 24 (01) : 149 - 149