False discovery rate paradigms for statistical analyses of microarray gene expression data

被引:29
|
作者
Cheng, Cheng [1 ]
Pounds, Stan [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN 38105 USA
基金
美国国家卫生研究院;
关键词
multiple tests; false discovery rate; q-value; significance threshold selection; profile information criterion; microarray; gene expression;
D O I
10.6026/97320630001436
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The microarray gene expression applications have greatly stimulated the statistical research on the massive multiple hypothesis tests problem. There is now a large body of literature in this area and basically five paradigms of massive multiple tests: control of the false discovery rate (FDR), estimation of FDR, significance threshold criteria, control of family-wise error rate (FWER) or generalized FWER (gFWER), and empirical Bayes approaches. This paper contains a technical survey of the developments of the FDR-related paradigms, emphasizing precise formulation of the problem, concepts of error measurements, and considerations in applications. The goal is not to do an exhaustive literature survey, but rather to review the current state of the field.
引用
下载
收藏
页码:436 / 446
页数:11
相关论文
共 50 条
  • [21] False discovery rate for functional data
    Olsen, Niels Lundtorp
    Pini, Alessia
    Vantini, Simone
    TEST, 2021, 30 (03) : 784 - 809
  • [22] False discovery rate for functional data
    Niels Lundtorp Olsen
    Alessia Pini
    Simone Vantini
    TEST, 2021, 30 : 784 - 809
  • [23] False discovery rate, sensitivity and sample size for microarray studies
    Pawitan, Y
    Michiels, S
    Koscielny, S
    Gusnanto, A
    Ploner, A
    BIOINFORMATICS, 2005, 21 (13) : 3017 - 3024
  • [24] Two-stage false discovery rate in microarray studies
    Kang, Joonsung
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (04) : 894 - 908
  • [25] Triclustering Discovery Using the δ-Trimax Method on Microarray Gene Expression Data
    Siswantining, Titin
    Saputra, Noval
    Sarwinda, Devvi
    Al-Ash, Herley Shaori
    SYMMETRY-BASEL, 2021, 13 (03):
  • [26] Towards Knowledge Discovery from cDNA Microarray Gene Expression Data
    Komorowski, Jan
    Hvidsten, Torgeir R.
    Jenssen, Tor-Kristian
    Tjeldvoll, Dyre
    Hovig, Eivind
    Sandvik, Arne K.
    Laegreid, Astrid
    LECTURE NOTES IN COMPUTER SCIENCE <D>, 2000, 1910 : 470 - 475
  • [27] Informative gene discovery for cancer classification from microarray expression data
    Ng, M
    Chan, LW
    2005 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2005, : 393 - 398
  • [28] Class Aware Exemplar Discovery from Microarray Gene Expression Data
    Sharma, Shivani
    Agrawal, Abhinna
    Patel, Dhaval
    BIG DATA ANALYTICS, BDA 2015, 2015, 9498 : 244 - 257
  • [29] Controlling the False Discovery Rate in Many SMR Analyses
    Morfeld, Peter
    JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 2016, 58 (01) : E21 - E22
  • [30] Microarray analysis of gene expression: considerations in data mining and statistical treatment
    Verducci, Joseph S.
    Melfi, Vincent F.
    Lin, Shili
    Wang, Zailong
    Roy, Sashwati
    Sen, Chandan K.
    PHYSIOLOGICAL GENOMICS, 2006, 25 (03) : 355 - 363