False discovery rate paradigms for statistical analyses of microarray gene expression data

被引:29
|
作者
Cheng, Cheng [1 ]
Pounds, Stan [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN 38105 USA
基金
美国国家卫生研究院;
关键词
multiple tests; false discovery rate; q-value; significance threshold selection; profile information criterion; microarray; gene expression;
D O I
10.6026/97320630001436
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The microarray gene expression applications have greatly stimulated the statistical research on the massive multiple hypothesis tests problem. There is now a large body of literature in this area and basically five paradigms of massive multiple tests: control of the false discovery rate (FDR), estimation of FDR, significance threshold criteria, control of family-wise error rate (FWER) or generalized FWER (gFWER), and empirical Bayes approaches. This paper contains a technical survey of the developments of the FDR-related paradigms, emphasizing precise formulation of the problem, concepts of error measurements, and considerations in applications. The goal is not to do an exhaustive literature survey, but rather to review the current state of the field.
引用
下载
收藏
页码:436 / 446
页数:11
相关论文
共 50 条
  • [31] Comparisons and validation of statistical clustering techniques for microarray gene expression data
    Datta, S
    Datta, S
    BIOINFORMATICS, 2003, 19 (04) : 459 - 466
  • [32] Identification of differentially expressed genes and false discovery rate in microarray studies
    Gusnanto, Arief
    Calza, Stefano
    Pawitan, Yudi
    CURRENT OPINION IN LIPIDOLOGY, 2007, 18 (02) : 187 - 193
  • [33] Local false discovery rate facilitates comparison of different microarray experiments
    Hong, Wan-Jen
    Tibshirani, Robert
    Chu, Gilbert
    NUCLEIC ACIDS RESEARCH, 2009, 37 (22) : 7483 - 7497
  • [34] Differential and correlation analyses of microarray gene expression data in the CEPH Utah families
    Tan, Qihua
    Zhao, Jinghua
    Li, Shuxia
    Christiansen, Lene
    Kruse, Torben A.
    Christensen, Kaare
    GENOMICS, 2008, 92 (02) : 94 - 100
  • [35] Repeatability of published microarray gene expression analyses
    Ioannidis, John P. A.
    Allison, David B.
    Ball, Catherine A.
    Coulibaly, Issa
    Cui, Xiangqin
    Culhane, Aedin C.
    Falchi, Mario
    Furlanello, Cesare
    Game, Laurence
    Jurman, Giuseppe
    Mangion, Jon
    Mehta, Tapan
    Nitzberg, Michael
    Page, Grier P.
    Petretto, Enrico
    van Noort, Vera
    NATURE GENETICS, 2009, 41 (02) : 149 - 155
  • [36] Repeatability of published microarray gene expression analyses
    John P A Ioannidis
    David B Allison
    Catherine A Ball
    Issa Coulibaly
    Xiangqin Cui
    Aedín C Culhane
    Mario Falchi
    Cesare Furlanello
    Laurence Game
    Giuseppe Jurman
    Jon Mangion
    Tapan Mehta
    Michael Nitzberg
    Grier P Page
    Enrico Petretto
    Vera van Noort
    Nature Genetics, 2009, 41 : 149 - 155
  • [37] Statistical analysis of microarray gene expression data from a mouse model of toxoplasmosis
    Shrikant Pawar
    Cheryl D Davis
    Claire A Rinehart
    BMC Bioinformatics, 12
  • [38] Statistical analysis of microarray gene expression data from a mouse model of toxoplasmosis
    Pawar, Shrikant
    Davis, Cheryl D.
    Rinehart, Claire A.
    BMC BIOINFORMATICS, 2011, 12
  • [39] Searching for evidence of altered gene expression: a comment on statistical analysis of microarray data
    Wittes, J
    Friedman, HP
    JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1999, 91 (05) : 400 - 401
  • [40] Controlling the False Discovery Rate in Many SMR Analyses Response
    Dell, Linda D.
    Gallagher, Alexa E.
    Crawford, Lori
    Jones, Rachael M.
    Mundt, Kenneth A.
    JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 2016, 58 (01) : E23 - E23