False discovery rate paradigms for statistical analyses of microarray gene expression data

被引:29
|
作者
Cheng, Cheng [1 ]
Pounds, Stan [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN 38105 USA
基金
美国国家卫生研究院;
关键词
multiple tests; false discovery rate; q-value; significance threshold selection; profile information criterion; microarray; gene expression;
D O I
10.6026/97320630001436
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The microarray gene expression applications have greatly stimulated the statistical research on the massive multiple hypothesis tests problem. There is now a large body of literature in this area and basically five paradigms of massive multiple tests: control of the false discovery rate (FDR), estimation of FDR, significance threshold criteria, control of family-wise error rate (FWER) or generalized FWER (gFWER), and empirical Bayes approaches. This paper contains a technical survey of the developments of the FDR-related paradigms, emphasizing precise formulation of the problem, concepts of error measurements, and considerations in applications. The goal is not to do an exhaustive literature survey, but rather to review the current state of the field.
引用
下载
收藏
页码:436 / 446
页数:11
相关论文
共 50 条
  • [1] A practical false discovery rate approach to identifying patterns of differential expression in microarray data
    Grant, GR
    Liu, JM
    Stoeckert, CJ
    BIOINFORMATICS, 2005, 21 (11) : 2684 - 2690
  • [3] Estimation procedures for the false discovery rate:: a systematic comparison for microarray data
    Schimek, Michael G.
    Pavlik, Tomas
    COMPSTAT 2006: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2006, : 67 - +
  • [4] Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms
    Maniruzzaman, Md
    Rahman, Md Jahanur
    Ahammed, Benojir
    Abedin, Md Menhazul
    Suri, Harman S.
    Biswas, Mainak
    El-Baz, Ayman
    Bangeas, Petros
    Tsoulfas, Georgios
    Suri, Jasjit S.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 176 : 173 - 193
  • [5] A generalized false discovery rate in microarray studies
    Kang, Moonsu
    Chun, Heuiju
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 731 - 737
  • [6] Statistical Quality Control of Microarray Gene Expression Data
    Lu, Shen
    Segall, Richard S.
    WMSCI 2011: 15TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL I, 2011, : 206 - 211
  • [7] Statistical design and the analysis of gene expression microarray data
    Kerr, MK
    Churchill, GA
    GENETICAL RESEARCH, 2001, 77 (02) : 123 - 128
  • [8] Some statistical issues in microarray gene expression data
    Mayo, Matthew S.
    Gajewski, Byron J.
    Morris, Jeffrey S.
    RADIATION RESEARCH, 2006, 165 (06) : 745 - 748
  • [9] Estimation of false discovery rates in multiple testing: Application to gene microarray data
    Tsai, CA
    Hsueh, HM
    Chen, JJ
    BIOMETRICS, 2003, 59 (04) : 1071 - 1081
  • [10] Multidimensional local false discovery rate for microarray studies
    Ploner, A
    Calza, S
    Gusnanto, A
    Pawitan, Y
    BIOINFORMATICS, 2006, 22 (05) : 556 - 565