Convolutional networks for kidney segmentation in contrast-enhanced CT scans

被引:70
|
作者
Thong, William [1 ]
Kadoury, Samuel [1 ]
Piche, Nicolas [2 ]
Pal, Christopher J. [1 ]
机构
[1] Polytech Montreal, Dept Comp & Software Engn, Montreal, PQ, Canada
[2] ORS, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Medical imaging and visualisation; image processing and analysis;
D O I
10.1080/21681163.2016.1148636
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Organ segmentation in medical imagery can be used to guide patient diagnosis, treatment and follow ups. In this paper, we present a fully automatic framework for kidney segmentation with convolutional networks (ConvNets) in contrast-enhanced computerised tomography (CT) scans. In our approach, a ConvNet is trained using a patch-wise approach to predict the class membership of the central voxel in 2D patches. The segmentation of the kidneys is then produced by densely running the ConvNet over each slice of a CT scan. Efficient predictions can be achieved by transforming fully connected layers into convolutional operations and by fragmenting the maxpooling layers to segment a whole CT scan volume in a few seconds. We report the segmentation performance of our framework on a highly variable data-set of 79 cases using a variety of evaluation metrics.
引用
收藏
页码:277 / 282
页数:6
相关论文
共 50 条
  • [21] Contrast-enhanced CT imaging in patients with chronic kidney disease
    von Stillfried, Saskia
    Apitzsch, Jonas C.
    Ehling, Josef
    Penzkofer, Tobias
    Mahnken, Andreas H.
    Knuechel, Ruth
    Floege, Juergen
    Boor, Peter
    ANGIOGENESIS, 2016, 19 (04) : 525 - 535
  • [22] Prevalence and characteristics of intravertebral enhancement on contrast-enhanced CT scans in cancer patients
    Rasselet, Benjamin
    Larbi, Ahmed
    Viala, Pierre
    Molinari, Nicolas
    Tetreau, Raphael
    Faruch-Bilfeld, Marie
    Taourel, Patrice
    Cyteval, Catherine
    EUROPEAN JOURNAL OF RADIOLOGY, 2017, 86 : 1 - 5
  • [23] Contrast-enhanced CT imaging in patients with chronic kidney disease
    Saskia von Stillfried
    Jonas C. Apitzsch
    Josef Ehling
    Tobias Penzkofer
    Andreas H. Mahnken
    Ruth Knüchel
    Jürgen Floege
    Peter Boor
    Angiogenesis, 2016, 19 : 525 - 535
  • [24] Lung X-ray Segmentation using Deep Convolutional Neural Networks on Contrast-Enhanced Binarized Images
    Chen, Hsin-Jui
    Ruan, Shanq-Jang
    Huang, Sha-Wo
    Peng, Yan-Tsung
    MATHEMATICS, 2020, 8 (04)
  • [25] An efficient colon segmentation method for oral contrast-enhanced CT colonography
    Bidgoli, J. H.
    Ahmadian, A.
    Akhlaghpor, S.
    Alam, N. R.
    Mahmodabadi, S. Z.
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 3429 - 3432
  • [26] AUTOMATIC INFERIOR VENA CAVA SEGMENTATION IN CONTRAST-ENHANCED CT VOLUMES
    Lefevre, Thierry
    Mory, Benoit
    Ardon, Roberto
    Sanchez-Castro, Javier
    Yezzi, Anthony
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 420 - 423
  • [27] Contrast-enhanced sonography of the kidney
    Setola, S. V.
    Catalano, O.
    Sandomenico, F.
    Siani, A.
    ABDOMINAL IMAGING, 2007, 32 (01): : 21 - 28
  • [28] Contrast-enhanced sonography of the kidney
    S. V. Setola
    O. Catalano
    F. Sandomenico
    A. Siani
    Abdominal Imaging, 2007, 32 : 21 - 28
  • [29] Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans
    Conze, Pierre-Henri
    Noblet, Vincent
    Rousseau, Francois
    Heitz, Fabrice
    de Blasi, Vito
    Memeo, Riccardo
    Pessaux, Patrick
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2017, 12 (02) : 223 - 233
  • [30] Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans
    Pierre-Henri Conze
    Vincent Noblet
    François Rousseau
    Fabrice Heitz
    Vito de Blasi
    Riccardo Memeo
    Patrick Pessaux
    International Journal of Computer Assisted Radiology and Surgery, 2017, 12 : 223 - 233