Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans

被引:47
|
作者
Conze, Pierre-Henri [1 ]
Noblet, Vincent [1 ]
Rousseau, Francois [2 ]
Heitz, Fabrice [1 ]
de Blasi, Vito [3 ]
Memeo, Riccardo [3 ]
Pessaux, Patrick [3 ]
机构
[1] Univ Strasbourg, CNRS, ICube UMR 7357, FMTS, 300 Bd Sebastien Brant, F-67412 Illkirch Graffenstaden, France
[2] INSERM, LATIM UMR 1101, Telecom Bretagne, Inst Mines Telecom, Technopole Brest Iroise, F-29238 Brest, France
[3] Inst Hosp Univ Strasbourg, Dept Hepatobiliary & Pancreat Surg, Nouvel Hop Civil, 1 Pl Hop, F-67000 Strasbourg, France
关键词
Liver tumor segmentation; Random forest; Supervoxels; Dynamic features; Hierarchical multi-scale tree; Spatial adaptivity; DECISION FORESTS; AUTOMATIC SEGMENTATION; CRITERIA; CLASSIFICATION; VALIDATION; CONTEXT;
D O I
10.1007/s11548-016-1493-1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Toward an efficient clinical management of hepatocellular carcinoma (HCC), we propose a classification framework dedicated to tumor necrosis rate estimation from dynamic contrast-enhanced CT scans. Based on machine learning, it requires weak interaction efforts to segment healthy, active and necrotic liver tissues. Our contributions are two-fold. First, we apply random forest (RF) on supervoxels using multi-phase supervoxel-based features that discriminate tissues based on their dynamic in response to contrast agent injection. Second, we extend this technique in a hierarchical multi-scale fashion to deal with multiple spatial extents and appearance heterogeneity. It translates in an adaptive data sampling scheme combining RF and hierarchical multi-scale tree resulting from recursive supervoxel decomposition. By concatenating multi-phase features across the hierarchical multi-scale tree to describe leaf supervoxels, we enable RF to automatically infer the most informative scales without defining any explicit rules on how to combine them. Assessment on clinical data confirms the benefits of multi-phase information embedded in a multi-scale supervoxel representation for HCC tumor segmentation. Dedicated but not limited only to HCC management, both contributions reach further steps toward more accurate multi-label tissue classification.
引用
收藏
页码:223 / 233
页数:11
相关论文
共 50 条
  • [1] Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans
    Pierre-Henri Conze
    Vincent Noblet
    François Rousseau
    Fabrice Heitz
    Vito de Blasi
    Riccardo Memeo
    Patrick Pessaux
    International Journal of Computer Assisted Radiology and Surgery, 2017, 12 : 223 - 233
  • [2] RANDOM FORESTS ON HIERARCHICAL MULTI-SCALE SUPERVOXELS FOR LIVER TUMOR SEGMENTATION IN DYNAMIC CONTRAST-ENHANCED CT SCANS
    Conze, P. -H.
    Noblet, V.
    Rousseau, F.
    Heitz, F.
    Memeo, R.
    Pessaux, P.
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 416 - 419
  • [3] Unsupervised supervoxel-based lung tumor segmentation across patient scans in hybrid PET/MRI
    Hansen, Stine
    Kuttner, Samuel
    Kampffmeyer, Michael
    Markussen, Tom-Vegard
    Sundset, Rune
    Oen, Silje Kjaernes
    Eikenes, Live
    Jenssen, Robert
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 167
  • [4] Automatic Liver Segmentation on Volumetric CT Images Using Supervoxel-Based Graph Cuts
    Wu, Weiwei
    Zhou, Zhuhuang
    Wu, Shuicai
    Zhang, Yanhua
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2016, 2016
  • [5] RenalSegNet: automated segmentation of renal tumor, veins, and arteries in contrast-enhanced CT scans
    Khan, Rashid
    Chen, Chao
    Zaman, Asim
    Wu, Jiayi
    Mai, Haixing
    Su, Liyilei
    Kang, Yan
    Huang, Bingding
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (02)
  • [6] Contrast-Enhanced CT Renal Tumor Segmentation
    Xiao, Chuda
    Hassan, Haseeb
    Huang, Bingding
    KIDNEY AND KIDNEY TUMOR SEGMENTATION, KITS 2021, 2022, 13168 : 116 - 122
  • [7] Convolutional networks for kidney segmentation in contrast-enhanced CT scans
    Thong, William
    Kadoury, Samuel
    Piche, Nicolas
    Pal, Christopher J.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2018, 6 (03): : 277 - 282
  • [8] Phase recognition in contrast-enhanced CT scans based on deep learning and random sampling
    Dao, Binh T.
    Nguyen, Thang, V
    Pham, Hieu H.
    Nguyen, Ha Q.
    MEDICAL PHYSICS, 2022, 49 (07) : 4518 - 4528
  • [9] TUMOR DELINEATION WITH A PROBABILITY FUNCTION BASED ON DYNAMIC CONTRAST-ENHANCED CT
    Korporaal, J.
    van den Berg, N.
    Groenendaal, G.
    Moman, M.
    van Vulpen, M.
    van der Heide, U.
    RADIOTHERAPY AND ONCOLOGY, 2009, 92 : S81 - S81
  • [10] Contrast-enhanced images of us scans and ct scans in diagnosis of secondary focal liver masses
    Lanzafame, S.
    Giacobino, A.
    Volpatto, R.
    Bonenti, G.
    Sarno, A.
    Robotti, D.
    Debani, P.
    Cammarota, T.
    Ciorba, A.
    Ritorto, G.
    Contu, V
    Ottaviani, D.
    Ciuffreda, L.
    Schena, M.
    ANNALS OF ONCOLOGY, 2007, 18 : 16 - 16