Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans

被引:47
|
作者
Conze, Pierre-Henri [1 ]
Noblet, Vincent [1 ]
Rousseau, Francois [2 ]
Heitz, Fabrice [1 ]
de Blasi, Vito [3 ]
Memeo, Riccardo [3 ]
Pessaux, Patrick [3 ]
机构
[1] Univ Strasbourg, CNRS, ICube UMR 7357, FMTS, 300 Bd Sebastien Brant, F-67412 Illkirch Graffenstaden, France
[2] INSERM, LATIM UMR 1101, Telecom Bretagne, Inst Mines Telecom, Technopole Brest Iroise, F-29238 Brest, France
[3] Inst Hosp Univ Strasbourg, Dept Hepatobiliary & Pancreat Surg, Nouvel Hop Civil, 1 Pl Hop, F-67000 Strasbourg, France
关键词
Liver tumor segmentation; Random forest; Supervoxels; Dynamic features; Hierarchical multi-scale tree; Spatial adaptivity; DECISION FORESTS; AUTOMATIC SEGMENTATION; CRITERIA; CLASSIFICATION; VALIDATION; CONTEXT;
D O I
10.1007/s11548-016-1493-1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Toward an efficient clinical management of hepatocellular carcinoma (HCC), we propose a classification framework dedicated to tumor necrosis rate estimation from dynamic contrast-enhanced CT scans. Based on machine learning, it requires weak interaction efforts to segment healthy, active and necrotic liver tissues. Our contributions are two-fold. First, we apply random forest (RF) on supervoxels using multi-phase supervoxel-based features that discriminate tissues based on their dynamic in response to contrast agent injection. Second, we extend this technique in a hierarchical multi-scale fashion to deal with multiple spatial extents and appearance heterogeneity. It translates in an adaptive data sampling scheme combining RF and hierarchical multi-scale tree resulting from recursive supervoxel decomposition. By concatenating multi-phase features across the hierarchical multi-scale tree to describe leaf supervoxels, we enable RF to automatically infer the most informative scales without defining any explicit rules on how to combine them. Assessment on clinical data confirms the benefits of multi-phase information embedded in a multi-scale supervoxel representation for HCC tumor segmentation. Dedicated but not limited only to HCC management, both contributions reach further steps toward more accurate multi-label tissue classification.
引用
收藏
页码:223 / 233
页数:11
相关论文
共 50 条
  • [21] Assessment of Tumor Blood Flow Distribution by Dynamic Contrast-Enhanced CT
    Koh, T. S.
    Shi, W.
    Thng, C. H.
    Ho, J. T. S.
    Khoo, J. B. K.
    Cheong, D. L. H.
    Lim, T. C. C.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (08) : 1504 - 1514
  • [22] Segmentation and classification of breast tumor using dynamic contrast-enhanced MR images
    Zheng, Yuanjie
    Baloch, Sajjad
    Englander, Sarah
    Schnall, Mitchell D.
    Shen, Dinggang
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION- MICCAI 2007, PT 2, PROCEEDINGS, 2007, 4792 : 393 - +
  • [23] CT Data Curation for Liver Patients: Phase Recognition in Dynamic Contrast-Enhanced CT
    Zhou, Bo
    Harrison, Adam P.
    Yao, Jiawen
    Cheng, Chi-Tung
    Xiao, Jing
    Liao, Chien-Hung
    Lu, Le
    DOMAIN ADAPTATION AND REPRESENTATION TRANSFER AND MEDICAL IMAGE LEARNING WITH LESS LABELS AND IMPERFECT DATA, DART 2019, MIL3ID 2019, 2019, 11795 : 139 - 147
  • [24] A flexible deep learning framework for liver tumor diagnosis using variable multi-phase contrast-enhanced CT scans
    Huang, Shixin
    Nie, Xixi
    Pu, Kexue
    Wan, Xiaoyu
    Luo, Jiawei
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2024, 150 (10)
  • [25] Focal liver masses: Enhancement patterns on contrast-enhanced images - Concordance of US scans with CT scans and MR images
    Burns, Peter N.
    Wilson, Stephanie R.
    RADIOLOGY, 2007, 242 (01) : 162 - 174
  • [26] Breast mass segmentation on dynamic contrast-enhanced magnetic resonance scans using the level set method
    Shi, Jiazheng
    Sahiner, Berkman
    Chan, Heang-Ping
    Paramagul, Chintana
    Hadjiiski, Lubomir M.
    Helvie, Mark
    Wu, Yi-Ta
    Ge, Jun
    Zhang, Yiheng
    Zhou, Chuan
    Wei, Jun
    MEDICAL IMAGING 2008: COMPUTER-AIDED DIAGNOSIS, PTS 1 AND 2, 2008, 6915
  • [27] Role of contrast-enhanced dynamic CT for evaluating tumor angiogenesis in lung cancer
    Tateishi, U
    Kusumoto, M
    Tsuchiya, R
    Moriyama, N
    RADIOLOGY, 2001, 221 : 211 - 211
  • [28] A new unified level set method for semi-automatic liver tumor segmentation on contrast-enhanced CT images
    Li, Bing Nan
    Chui, Chee Kong
    Chang, Stephen
    Ong, Sim Heng
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) : 9661 - 9668
  • [29] Lesion Segmentation and Identification of Breast Tumor on Dynamic Contrast-Enhanced Magnetic Resonance Imaging
    马文军
    洪容容
    叶少珍
    杨月
    李跃华
    CHEN Li
    张素
    Journal of Shanghai Jiaotong University(Science), 2014, 19 (05) : 630 - 635
  • [30] Lesion segmentation and identification of breast tumor on dynamic contrast-enhanced magnetic resonance imaging
    Ma W.-J.
    Hong R.-R.
    Ye S.-Z.
    Yang Y.
    Li Y.-H.
    Chen L.
    Zhang S.
    Zhang, Su, 1600, Shanghai Jiaotong University (19): : 630 - 635