Convolutional networks for kidney segmentation in contrast-enhanced CT scans

被引:70
|
作者
Thong, William [1 ]
Kadoury, Samuel [1 ]
Piche, Nicolas [2 ]
Pal, Christopher J. [1 ]
机构
[1] Polytech Montreal, Dept Comp & Software Engn, Montreal, PQ, Canada
[2] ORS, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Medical imaging and visualisation; image processing and analysis;
D O I
10.1080/21681163.2016.1148636
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Organ segmentation in medical imagery can be used to guide patient diagnosis, treatment and follow ups. In this paper, we present a fully automatic framework for kidney segmentation with convolutional networks (ConvNets) in contrast-enhanced computerised tomography (CT) scans. In our approach, a ConvNet is trained using a patch-wise approach to predict the class membership of the central voxel in 2D patches. The segmentation of the kidneys is then produced by densely running the ConvNet over each slice of a CT scan. Efficient predictions can be achieved by transforming fully connected layers into convolutional operations and by fragmenting the maxpooling layers to segment a whole CT scan volume in a few seconds. We report the segmentation performance of our framework on a highly variable data-set of 79 cases using a variety of evaluation metrics.
引用
收藏
页码:277 / 282
页数:6
相关论文
共 50 条
  • [41] The feasibility of contrast-enhanced spectral mammography immediately after contrast-enhanced CT
    Okada, Nobuko
    Tatsugami, Fuminari
    Sugai, Mai
    Okita, Izumi
    Ito, Mitsuya
    Ohtani, Shoichiro
    Ichimura, Kouichi
    Urashima, Masaki
    Awai, Kazuo
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2019, 12 (03) : 277 - 282
  • [42] The feasibility of contrast-enhanced spectral mammography immediately after contrast-enhanced CT
    Nobuko Okada
    Fuminari Tatsugami
    Mai Sugai
    Izumi Okita
    Mitsuya Ito
    Shoichiro Ohtani
    Kouichi Ichimura
    Masaki Urashima
    Kazuo Awai
    Radiological Physics and Technology, 2019, 12 : 277 - 282
  • [43] Method for Segmentation of Knee Articular Cartilages Based on Contrast-Enhanced CT Images
    Katariina A. H. Myller
    Juuso T. J. Honkanen
    Jukka S. Jurvelin
    Simo Saarakkala
    Juha Töyräs
    Sami P. Väänänen
    Annals of Biomedical Engineering, 2018, 46 : 1756 - 1767
  • [44] A liver segmentation approach in contrast-enhanced CT images with patient specific knowledge
    Afifi, Ahmed
    Nakaguchi, Toshiya
    Tsumura, Norimichi
    MEDICAL IMAGING 2011: IMAGE PROCESSING, 2011, 7962
  • [45] Asymmetric affinity in fuzzy connectedness segmentation for oral contrast-enhanced CT colonography
    Franaszek, Marek
    Summers, Ronald M.
    19TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2006, : 419 - +
  • [46] Segmentation and 3D Visualization of Pheochromocytoma in Contrast-Enhanced CT Images
    Tang, San
    Guo, Yi
    Wang, Yuanyuan
    Cao, Wanli
    Sun, Fukang
    2014 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), VOLS 1-2, 2014, : 39 - 43
  • [47] Method for Segmentation of Knee Articular Cartilages Based on Contrast-Enhanced CT Images
    Myller, Katariina A. H.
    Honkanen, Juuso T. J.
    Jurvelin, Jukka S.
    Saarakkala, Simo
    Toeyraes, Juha
    Vaeaenaenen, Sami P.
    ANNALS OF BIOMEDICAL ENGINEERING, 2018, 46 (11) : 1756 - 1767
  • [48] Computer-aided mesenteric vasculature segmentation on high-resolution 3D contrast-enhanced CT angiography scans
    Zhang, Weidong
    Liu, Jiamin
    Yao, Jianhua
    Tan Nguyen
    Louie, Adeline
    Wank, Stephen
    Summers, Ronald M.
    MEDICAL IMAGING 2012: COMPUTER-AIDED DIAGNOSIS, 2012, 8315
  • [49] Frequency and risk factors of contrast media extravasation in 378,082 intravenous contrast-enhanced CT scans
    Wang, Lijian
    Chen, Qinlan
    Liu, Haipeng
    Wang, Xiaomi
    Qian, Qian
    Xu, Mengxi
    Ma, Linlin
    Wang, Xinhong
    EUROPEAN JOURNAL OF RADIOLOGY, 2025, 184
  • [50] Applications of contrast-enhanced ultrasound in the kidney
    Brittany Kazmierski
    Corinne Deurdulian
    Hisham Tchelepi
    Edward G. Grant
    Abdominal Radiology, 2018, 43 : 880 - 898