TOPOLOGICAL CLASSIFICATION OF CELLULAR AUTOMATA

被引:13
|
作者
BINDER, PM
机构
[1] Dept. of Theor. Phys., Oxford Univ.
来源
关键词
D O I
10.1088/0305-4470/24/1/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We summarize an extensive numerical study of basin and attractor sizes among the 88 distinct elementary cellular automata (CA) rules. Based on this study and on previous work in discretized dynamical systems, we propose a new classification of CA, complementary to that of Wolfram, in which attractor globality is important. With the use of fixed boundary conditions we find global periodic attractors in CA for the first time. Not a single instance of attractor chaos is observed in this class of rules.
引用
收藏
页码:L31 / L34
页数:4
相关论文
共 50 条
  • [41] A code classification for semitotalistic cellular automata
    Popovici, Adriana
    [J]. Numerical Analysis and Applied Mathematics, 2007, 936 : 428 - 431
  • [42] A complete and efficiently computable topological classification of D-dimensional linear cellular automata over Zm
    Manzini, G
    Margara, L
    [J]. THEORETICAL COMPUTER SCIENCE, 1999, 221 (1-2) : 157 - 177
  • [43] Topological chaos of universal elementary cellular automata rule
    Weifeng Jin
    Fangyue Chen
    [J]. Nonlinear Dynamics, 2011, 63 : 217 - 222
  • [44] Criterion of Infinite Topological Entropy for Multidimensional Cellular Automata
    E. L. Lakshtanov
    E. S. Langvagen
    [J]. Problems of Information Transmission, 2004, 40 (2) : 165 - 167
  • [45] Topological chaos of universal elementary cellular automata rule
    Jin, Weifeng
    Chen, Fangyue
    [J]. NONLINEAR DYNAMICS, 2011, 63 (1-2) : 217 - 222
  • [46] The topological entropy of nth iteration of an additive cellular automata
    Akin, H
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 174 (02) : 1427 - 1437
  • [47] Topological Design of Structures Using a Cellular Automata Method
    Du, Yixian
    Chen, De
    Xiang, Xiaobo
    Tian, Qihua
    Zhang, Yi
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2013, 94 (01): : 53 - 75
  • [48] Topological dynamics of 2D cellular automata
    Sablik, Mathieu
    Theyssier, Guillaume
    [J]. LOGIC AND THEORY OF ALGORITHMS, 2008, 5028 : 523 - +
  • [49] Topological definitions of chaos applied to cellular automata dynamics
    Cattaneo, G
    Margara, L
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 1998, 1998, 1450 : 816 - 824
  • [50] Generalized Reversibility of Topological Dynamical Systems and Cellular Automata
    Zhang, Kuize
    Zhang, Lijun
    [J]. JOURNAL OF CELLULAR AUTOMATA, 2015, 10 (5-6) : 425 - 434