Generalized Reversibility of Topological Dynamical Systems and Cellular Automata

被引:0
|
作者
Zhang, Kuize [1 ,2 ]
Zhang, Lijun [1 ,3 ]
机构
[1] Harbin Engn Univ, Coll Automat, Harbin 150001, Peoples R China
[2] Chinese Acad Sci, Inst Syst Sci, Beijing 100190, Peoples R China
[3] Northwestern Polytech Univ, Sch Marine Sci Technol, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Topological dynamical system; cellular automaton; generalized reversibility; limit set; topological entropy; undecidability; Drazin inverse; GROUP-INVERSES; MATRICES; ENTROPY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we characterize the reversibility of topological dynamical systems over the limit sets. We define a new concept of generalized inverse systems for topological dynamical systems, and prove that (i) a topological dynamical system has a generalized inverse system if and only if it is injective over its limit set and its limit set is reached in finite time, and (ii) if a topological dynamical system has a generalized inverse system, these two systems have the same topological entropy. For cellular automata (CAs), a particular class of topological dynamical systems, we prove some additional properties: (iii) A CA has a generalized inverse CA if and only if it is injective over its limit set. (iv) It is undecidable whether a given CA has a generalized inverse CA.
引用
收藏
页码:425 / 434
页数:10
相关论文
共 50 条
  • [1] Generalized Reversibility of Cellular Automata with Boundaries
    Zhang, Kuize
    Zhang, Lijun
    [J]. PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 418 - 423
  • [2] Embeddings of dynamical systems into cellular automata
    Mueller, Johannes
    Spandal, Christoph
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 165 - 177
  • [3] REVERSIBILITY IN CELLULAR AUTOMATA
    DIGREGORIO, S
    TRAUTTEUR, G
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1975, 11 (03) : 382 - 391
  • [4] Reversibility of linear cellular automata
    Martin del Rey, A.
    Rodriguez Sanchez, G.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (21) : 8360 - 8366
  • [5] REVERSIBILITY CONDITIONS FOR CELLULAR AUTOMATA
    TOME, JAB
    [J]. NEURAL NETWORKS FROM MODELS TO APPLICATIONS, 1989, : 389 - 397
  • [6] Reversibility in Asynchronous Cellular Automata
    Sarkar, Anindita
    Mukherjee, Anindita
    Das, Sukanta
    [J]. COMPLEX SYSTEMS, 2012, 21 (01): : 71 - 84
  • [7] Cellular Automata and other Discrete Dynamical Systems with Memory
    Alonso-Sanz, Ramon
    [J]. JOURNAL OF CELLULAR AUTOMATA, 2016, 11 (01) : 5 - 6
  • [8] Computational complexity of dynamical systems: The case of cellular automata
    Di Lena, P.
    Margara, L.
    [J]. INFORMATION AND COMPUTATION, 2008, 206 (9-10) : 1104 - 1116
  • [9] On the reversibility of 150 Wolfram cellular automata
    Del Rey, A. Martin
    Rodriguez Sanchez, G.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (07): : 975 - 983
  • [10] REVERSIBILITY OF A SYMMETRIC LINEAR CELLULAR AUTOMATA
    Martin Del Rey, A.
    Rodriguez Sanchez, G.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2009, 20 (07): : 1081 - 1086