Computational complexity of dynamical systems: The case of cellular automata

被引:17
|
作者
Di Lena, P. [1 ]
Margara, L. [1 ]
机构
[1] Univ Bologna, Dept Comp Sci, I-40127 Bologna, Italy
关键词
cellular automata; universality; classification;
D O I
10.1016/j.ic.2008.03.012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Cellular Automata can be considered discrete dynamical systems and at the same time a model of parallel computation. In this paper we investigate the connections between dynamical and computational properties of Cellular Automata. We propose a classification of Cellular Automata according to the complexities which rise from the basins of attraction of subshift attractors and investigate the intersection classes between our classification and other three topological classifications of Cellular Automata. From the intersection classes we can derive some necessary topological properties for a cellular automaton to be computationally universal according to our model. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1104 / 1116
页数:13
相关论文
共 50 条
  • [1] THE COMPUTATIONAL-COMPLEXITY OF CELLULAR AUTOMATA
    SUTNER, K
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1989, 380 : 451 - 459
  • [2] Periodic Orbits and Dynamical Complexity in Cellular Automata
    Dennunzio, Alberto
    Formenti, Enrico
    Di Lena, Pietro
    Margara, Luciano
    [J]. FUNDAMENTA INFORMATICAE, 2013, 126 (2-3) : 183 - 199
  • [3] Computational complexity of finite asynchronous cellular automata
    Dennunzio, Alberto
    Formenti, Enrico
    Manzoni, Luca
    Mauri, Giancarlo
    Porreca, Antonio E.
    [J]. THEORETICAL COMPUTER SCIENCE, 2017, 664 : 131 - 143
  • [4] Embeddings of dynamical systems into cellular automata
    Mueller, Johannes
    Spandal, Christoph
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 165 - 177
  • [5] ON THE COMPUTATIONAL-COMPLEXITY OF FINITE CELLULAR-AUTOMATA
    SUTNER, K
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1995, 50 (01) : 87 - 97
  • [6] Computational Complexity of the Stability Problem for Elementary Cellular Automata
    Goles, Eric
    Lobos, Fabiola
    Montealegre, Pedro
    Ruivo, Eurico L. P.
    de Oliveira, Pedro P. B.
    [J]. JOURNAL OF CELLULAR AUTOMATA, 2020, 15 (04) : 261 - 304
  • [7] The emergence of dynamical complexity: An exploration using elementary cellular automata
    Mizraji, E
    [J]. COMPLEXITY, 2004, 9 (06) : 33 - 42
  • [8] μ-Limit sets of cellular automata from a computational complexity perspective
    Boyer, L.
    Delacourt, M.
    Poupet, V.
    Sablik, M.
    Theyssier, G.
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2015, 81 (08) : 1623 - 1647
  • [9] On Dynamical Complexity of Surjective Ultimately Right-Expansive Cellular Automata
    Jalonen, Joonatan
    Kari, Jarkko
    [J]. CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS, AUTOMATA 2018, 2018, 10875 : 57 - 71
  • [10] On the Computational Complexity of Limit Cycles in Dynamical Systems
    Papadimitriou, Christos H.
    Vishnoi, Nisheeth K.
    [J]. ITCS'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INNOVATIONS IN THEORETICAL COMPUTER SCIENCE, 2016, : 403 - 403