Topological chaos of universal elementary cellular automata rule

被引:0
|
作者
Weifeng Jin
Fangyue Chen
机构
[1] Zhejiang Chinese Medical University,College of Pharmaceutical Sciences
[2] Hangzhou Dianzi University,School of Science
来源
Nonlinear Dynamics | 2011年 / 63卷
关键词
Cellular automata; Blocking transformation; Chaos; Universality; Symbolic dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
The dynamical behaviors of elementary cellular automata rule 110 are analyzed from the viewpoint of symbolic dynamics in the space of bi-infinite symbolic sequences. This paper conducts a rigorous analysis of the relationship between rules 110, 170 and 240 by applying blocking transformation and releasing transformation. Based on this result, the topological chaos of T110 induced by rule 110 is evaluated; that is, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{110}^{9}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{110}^{16}$\end{document} are topologically mixing and possess the positive topological entropies on their respective subsystems. Therefore, it is natural to argue that the intrinsic complexity of rule 110 is high according to the usual measure of complexity organized around the symbolic dynamics of stationary symbol sequences. Finally, it is worth mentioning that the method presented in this paper is also applicable to other blocking transformation equivalences therein.
引用
收藏
页码:217 / 222
页数:5
相关论文
共 50 条
  • [1] Topological chaos of universal elementary cellular automata rule
    Jin, Weifeng
    Chen, Fangyue
    [J]. NONLINEAR DYNAMICS, 2011, 63 (1-2) : 217 - 222
  • [2] Topological chaos for elementary cellular automata
    Cattaneo, G
    Finelli, M
    Margara, L
    [J]. ALGORITHMS AND COMPLEXITY, 1997, 1203 : 241 - 252
  • [3] Investigating topological chaos by elementary cellular automata dynamics
    Cattaneo, G
    Finelli, M
    Margara, L
    [J]. THEORETICAL COMPUTER SCIENCE, 2000, 244 (1-2) : 219 - 241
  • [4] Chaos of elementary cellular automata rule 42 of Wolfram's class II
    Chen, Fang-Yue
    Jin, Wei-Feng
    Chen, Guan-Rong
    Chen, Fang-Fang
    Chen, Lin
    [J]. CHAOS, 2009, 19 (01)
  • [5] Topological Chaos of Cellular Automata Rules
    Jin, Weifeng
    Chen, Fangyue
    Yang, Chunlan
    [J]. 2009 INTERNATIONAL WORKSHOP ON CHAOS-FRACTALS THEORIES AND APPLICATIONS (IWCFTA 2009), 2009, : 216 - +
  • [6] BINARY CHAOS SYNCHRONIZATION IN ELEMENTARY CELLULAR AUTOMATA
    Dogaru, Radu
    Dogaru, Ioana
    Kim, Hyongsuk
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (09): : 2871 - 2884
  • [7] Connecting Elementary Cellular Automata: Topological Properties of In-between Automata
    Kosela, Piotr
    Bylina, Jaroslaw
    [J]. JOURNAL OF CELLULAR AUTOMATA, 2024, 17 (5-6) : 425 - 435
  • [8] Topological definitions of chaos applied to cellular automata dynamics
    Cattaneo, G
    Margara, L
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 1998, 1998, 1450 : 816 - 824
  • [9] Edge of chaos in rule-changing cellular automata
    Mori, T
    Kudo, K
    Namagawa, Y
    Nakamura, R
    Yamakawa, O
    Suzuki, H
    Uesugi, T
    [J]. PHYSICA D, 1998, 116 (3-4): : 275 - 282
  • [10] Gliders, Collisions and Chaos of Cellular Automata Rule 62
    Shi, Lun
    Chen, Fangyue
    Jin, Weifeng
    [J]. 2009 INTERNATIONAL WORKSHOP ON CHAOS-FRACTALS THEORIES AND APPLICATIONS (IWCFTA 2009), 2009, : 221 - +