THE CALCULUS OF FRACTAL INTERPOLATION FUNCTIONS

被引:194
|
作者
BARNSLEY, MF
HARRINGTON, AN
机构
关键词
D O I
10.1016/0021-9045(89)90080-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:14 / 34
页数:21
相关论文
共 50 条
  • [21] Zipper rational fractal interpolation functions
    Pasupathi, R.
    Vijay
    Chand, A. K. B.
    Upadhye, N. S.
    [J]. JOURNAL OF ANALYSIS, 2024,
  • [22] Affine recurrent fractal interpolation functions
    Balasubramani, N.
    Gowrisankar, A.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (21-22): : 3765 - 3779
  • [23] Univariable affine fractal interpolation functions
    Drakopoulos, V.
    Vijender, N.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 207 (03) : 689 - 700
  • [24] On the integral transform of fractal interpolation functions
    Agathiyan, A.
    Gowrisankar, A.
    Fataf, Nur Aisyah Abdul
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 222 : 209 - 224
  • [25] Energy and Laplacian of fractal interpolation functions
    Li Xiao-hui
    Ruan Huo-jun
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2017, 32 (02): : 201 - 210
  • [27] Bivariate fractal interpolation functions on grids
    Dalla, L
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2002, 10 (01) : 53 - 58
  • [28] Energy and Laplacian of fractal interpolation functions
    Xiao-hui Li
    Huo-jun Ruan
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2017, 32 : 201 - 210
  • [29] Wavelets are piecewise fractal interpolation functions
    Hardin, DP
    [J]. FRACTALS IN MULTIMEDIA, 2002, 132 : 121 - 135
  • [30] MULTIVARIATE FRACTAL INTERPOLATION FUNCTIONS: SOME APPROXIMATION ASPECTS AND AN ASSOCIATED FRACTAL INTERPOLATION OPERATOR
    Pandey, Kshitij Kumar
    Viswanathan, Puthan Veedu
    [J]. Electronic Transactions on Numerical Analysis, 2022, 55 : 627 - 651