MEAN-FIELD THEORY OF POLYMER MELTING

被引:22
|
作者
BASCLE, J
GAREL, T
ORLAND, H
机构
[1] Service de Phys. Theor., CE-Saclay, Gif-sur-Yvette
来源
关键词
D O I
10.1088/0305-4470/25/23/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Flory model for the melting of a semiflexible polymer chain on a lattice. Using a field theoretical representation of the partition function, we propose a new mean-field theory. Within this theory, the system undergoes a first-order transition at temperature T(c), between a liquid-like phase at temperature T > T(c) and an ordered (almost stretched) phase at T < T(c), in agreement with the original Flory idea. In addition, we find a disorder point T(D) (> T(c)), separating two liquid phases with different short-range correlations. For T > T(D), the short-range correlations are isotropic, whereas for T < T(D), one-dimensional short-range order sets in. This disorder point may be relevant to the glass transition.
引用
收藏
页码:L1323 / L1329
页数:7
相关论文
共 50 条
  • [21] RELATIVISTIC MEAN-FIELD THEORY AND HYPERNUCLEI
    MARES, J
    JENNINGS, BK
    NUCLEAR PHYSICS A, 1995, 585 (1-2) : C347 - C348
  • [22] MEAN-FIELD THEORY OF THE PROTON GLASS
    DOBROSAVLJEVIC, V
    STRATT, RM
    PHYSICAL REVIEW B, 1987, 36 (16): : 8484 - 8496
  • [23] MEAN-FIELD THEORY AND SOLITONIC MATTER
    COHEN, TD
    NUCLEAR PHYSICS A, 1989, 495 (3-4) : 545 - 563
  • [24] MEAN-FIELD THEORY OF QUASICRYSTALLINE ORDER
    MERMIN, ND
    TROIAN, SM
    PHYSICAL REVIEW LETTERS, 1985, 54 (14) : 1524 - 1527
  • [25] MEAN-FIELD THEORY OF THE POTTS GLASS
    GROSS, DJ
    KANTER, I
    SOMPOLINSKY, H
    PHYSICAL REVIEW LETTERS, 1985, 55 (03) : 304 - 307
  • [26] Nonequilibrium dynamical mean-field theory
    Freericks, J. K.
    Turkowski, V. M.
    Zlatic, V.
    PHYSICAL REVIEW LETTERS, 2006, 97 (26)
  • [27] Mean-field theory of glass transitions
    Tokuyama, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 364 : 23 - 62
  • [28] Mean-field theory of inhomogeneous fluids
    Tschopp, S. M.
    Vuijk, H. D.
    Sharma, A.
    Brader, J. M.
    PHYSICAL REVIEW E, 2020, 102 (04)
  • [29] Mean-field theory of hot sandpiles
    Vergeles, M
    PHYSICAL REVIEW E, 1997, 55 (05): : 6264 - 6265
  • [30] Dynamics of polymers: A mean-field theory
    Fredrickson, Glenn H.
    Orland, Henri
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (08):