TOTAL CHROMATIC NUMBER OF GRAPHS OF HIGH DEGREE .2.

被引:5
|
作者
YAP, HP
CHEW, KH
机构
[1] National University of Singapore
关键词
TOTAL COLORING; TOTAL CHROMATIC NUMBER;
D O I
10.1017/S1446788700035801
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Theorem 1: suppose G is a simple graph of order n having DELTA(G) = n - k where k greater-than-or-equal-to 5 and n greater-than-or-equal-to max(13, 3k - 3) . If G contains an independent set of k - 3 vertices, then the TCC (Total Colouring Conjecture) is true. Applying Theorem 1, we also prove that the TCC is true for any simple graph G of order n having DELTA(G) = n - 5. The latter result together with some earlier results confirm that the TCC is true for all simple graphs whose maximum degree is at most four and for all simple graphs of order n having maximum degree at least n - 5.
引用
收藏
页码:219 / 228
页数:10
相关论文
共 50 条
  • [31] The total chromatic number of some bipartite graphs
    Campos, C. N.
    de Mello, C. P.
    ARS COMBINATORIA, 2008, 88 : 335 - 347
  • [32] Total Dominator Edge Chromatic Number of Graphs
    Li, Minhui
    Zhang, Shumin
    Wang, Caiyun
    Ye, Chengfu
    IAENG International Journal of Applied Mathematics, 2021, 51 (04) : 1 - 6
  • [33] TOTAL GLOBAL DOMINATOR CHROMATIC NUMBER OF GRAPHS
    Askari, S.
    Mojdeh, D. A.
    Nazari, E.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (02): : 650 - 661
  • [34] On the equitable total chromatic number of cubic graphs
    Dantas, S.
    de Figueiredo, C. M. H.
    Mazzuoccolo, G.
    Preissmann, M.
    dos Santos, V. F.
    Sasaki, D.
    DISCRETE APPLIED MATHEMATICS, 2016, 209 : 84 - 91
  • [35] On Total Chromatic Number of Complete Multipartite Graphs
    Dalal, Aseem
    Panda, B. S.
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2024, 2024, 14508 : 270 - 285
  • [36] A study of the total chromatic number of equibipartite graphs
    Chen, BL
    Cheng, CK
    Fu, HL
    Huang, KC
    DISCRETE MATHEMATICS, 1998, 184 (1-3) : 49 - 60
  • [37] On the chromatic number of random graphs with a fixed degree sequence
    Frieze, Alan
    Krivelevich, Michael
    Smyth, Cliff
    COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (05): : 733 - 746
  • [38] UPPER BOUND OF A GRAPHS CHROMATIC NUMBER, DEPENDING ON GRAPHS DEGREE AND DENSITY
    BORODIN, OV
    KOSTOCHKA, AV
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1977, 23 (2-3) : 247 - 250
  • [39] Relationships between the clique number, chromatic number, and the degree for some graphs
    Berlov S.L.
    Automatic Control and Computer Sciences, 2010, 44 (07) : 407 - 414
  • [40] Minors in Graphs with High Chromatic Number
    Boehme, Thomas
    Kostochka, Alexandr
    Thomason, Andrew
    COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (04): : 513 - 518