A study of the total chromatic number of equibipartite graphs

被引:1
|
作者
Chen, BL
Cheng, CK
Fu, HL
Huang, KC
机构
[1] Tunghai Univ, Dept Math, Taichung 40704, Taiwan
[2] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu, Taiwan
[3] Providence Univ, Dept Math Appl, Taichung, Taiwan
关键词
D O I
10.1016/S0012-365X(97)00160-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The total chromatic number chi(t)(G) of a graph G is the least number of colors needed to color the vertices and edges of G so that no adjacent vertices or edges receive the same color, no incident edges receive the same color as either of the vertices it is incident with. In this paper, we obtain some results of the total chromatic number of the equibiparrite graphs of order 2n with maximum degree n - 1. As a part of our results, we disprove the biconformability conjecture. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:49 / 60
页数:12
相关论文
共 50 条
  • [1] Total colorings of equibipartite graphs
    Chen, BL
    Dong, L
    Liu, QZ
    Huang, KC
    DISCRETE MATHEMATICS, 1999, 194 (1-3) : 59 - 65
  • [2] On the total chromatic edge stability number and the total chromatic subdivision number of graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    DISCRETE MATHEMATICS LETTERS, 2022, 10 : 1 - 8
  • [3] THE TOTAL CHROMATIC NUMBER OF SOME GRAPHS
    张忠辅
    张建勋
    王建方
    ScienceinChina,SerA., 1988, Ser.A.1988 (12) : 1434 - 1441
  • [4] THE TOTAL CHROMATIC NUMBER OF SOME GRAPHS
    ZHANG, ZF
    ZHANG, JX
    WANG, JF
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1988, 31 (12): : 1434 - 1441
  • [5] THE TOTAL CHROMATIC NUMBER OF SOME GRAPHS
    张忠辅
    张建勋
    王建方
    Science China Mathematics, 1988, (12) : 1434 - 1441
  • [6] Total dominator chromatic number of Kneser graphs
    Jalilolghadr, Parvin
    Behtoei, Ali
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (01) : 52 - 56
  • [7] Total dominator chromatic number of Mycieleskian graphs
    Kazemi, Adel P.
    UTILITAS MATHEMATICA, 2017, 103 : 129 - 137
  • [8] Total chromatic number of generalized Mycielski graphs
    Chen, Meirun
    Guo, Xiaofeng
    Li, Hao
    Zhang, Lianzhu
    DISCRETE MATHEMATICS, 2014, 334 : 48 - 51
  • [9] On the double total dominator chromatic number of graphs
    Beggas, Fairouz
    Kheddouci, Hamamache
    Marweni, Walid
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (05)
  • [10] On total chromatic number of direct product graphs
    Prnaver K.
    Zmazek B.
    Journal of Applied Mathematics and Computing, 2010, 33 (1-2) : 449 - 457