On Tolerant Fuzzy c-Means Clustering

被引:10
|
作者
Hamasuna, Yukihiro [1 ]
Endo, Yasunori [2 ]
Miyamoto, Sadaaki [2 ]
机构
[1] Univ Tsukuba, Doctoral Program Risk Engn, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
[2] Univ Tsukuba, Fac Syst & Informat Engn, Dept Risk Engn, Tsukuba, Ibaraki 3058573, Japan
基金
日本学术振兴会;
关键词
fuzzy c-means clustering; uncertainty; tolerance; fuzzy classification function; optimization;
D O I
10.20965/jaciii.2009.p0421
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new type of clustering algorithms by using a tolerance vector called tolerant fuzzy c-means clustering (TFCM). In the proposed algorithms, the new concept of tolerance vector plays very important role. In the original concept of tolerance, a tolerance vector attributes to each data. This concept is developed to handle data flexibly, that is, a tolerance vector attributes not only to each data but also each cluster. Using the new concept, we can consider the influence of clusters to each data by the tolerance. First, the new concept of tolerance is introduced into optimization problems based on conventional fuzzy c-means clustering (FCM). Second, the optimization problems with tolerance are solved by using Karush-Kuhn-Tucker conditions. Third, new clustering algorithms are constructed based on the explicit optimal solutions of the optimization problems. Finally, the effectiveness of the proposed algorithms is verified through numerical examples by fuzzy classification function.
引用
收藏
页码:421 / 428
页数:8
相关论文
共 50 条
  • [31] Gaussian Collaborative Fuzzy C-Means Clustering
    Gao, Yunlong
    Wang, Zhihao
    Li, Huidui
    Pan, Jinyan
    [J]. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2021, 23 (07) : 2218 - 2234
  • [32] Study on combining subtractive clustering with fuzzy c-means clustering
    Liu, WY
    Xiao, CJ
    Wang, BW
    Shi, Y
    Fang, SF
    [J]. 2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 2659 - 2662
  • [33] ENTROPY TOLERANT FUZZY C-MEANS IN MEDICAL IMAGES
    Kannan, S. R.
    Ramathilagam, S.
    Devi, R.
    Huang, Yueh-Min
    [J]. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2011, 4 (04) : 447 - 462
  • [34] Measuring the congruence of fuzzy partitions in fuzzy c-means clustering
    Suleman, Abdul
    [J]. APPLIED SOFT COMPUTING, 2017, 52 : 1285 - 1295
  • [35] A weighted fuzzy c-means clustering model for fuzzy data
    D'Urso, P
    Giordani, P
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (06) : 1496 - 1523
  • [36] Generalized Ordered Intuitionistic Fuzzy C-Means Clustering Algorithm Based on PROMETHEE and Intuitionistic Fuzzy C-Means
    Bashir, Muhammad Adnan
    Rashid, Tabasam
    Bashir, Muhammad Salman
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2023, 2023
  • [37] Federated c-Means and Fuzzy c-Means Clustering Algorithms for Horizontally and Vertically Partitioned Data
    Bárcena, Jose Luis Corcuera
    Marcelloni, Francesco
    Renda, Alessandro
    Bechini, Alessio
    Ducange, Pietro
    [J]. IEEE Transactions on Artificial Intelligence, 2024, 5 (12): : 6426 - 6441
  • [38] Classification via Deep Fuzzy c-Means Clustering
    Yeganejou, Mojtaba
    Dick, Scott
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2018,
  • [39] General equalization fuzzy C-means clustering algorithm
    Wen, Chuan-Jun
    Zhan, Yong-Zhao
    Ke, Jia
    [J]. Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2012, 32 (12): : 2751 - 2755
  • [40] Unsupervised Multiview Fuzzy C-Means Clustering Algorithm
    Hussain, Ishtiaq
    Sinaga, Kristina P.
    Yang, Miin-Shen
    [J]. ELECTRONICS, 2023, 12 (21)