NEW CLASS OF CODES BASED ON 2-DIMENSIONAL FOURIER-TRANSFORMS OVER FINITE-FIELDS

被引:1
|
作者
SHIOZAKI, A
机构
[1] Faculty of Engineering, Osaka Electro-Communication University 18-8 Neyagawa
关键词
ERROR CORRECTION CODES; NUMBER THEORETIC TRANSFORMS; REED-SOLOMON CODES;
D O I
10.1049/el:19941260
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new class of two-dimensional codes is proposed, which is based on two-dimensional Fourier transforms over a finite field. The code length of the proposed codes over GF(q) is (q - 1)(2) while that of nonsystematic Reed-Solomon codes over GF(q) is q - 1.
引用
收藏
页码:1832 / 1833
页数:2
相关论文
共 50 条
  • [21] A class of quantum codes over finite fields
    Xing M.
    Chen H.
    Zhang J.
    Xiao F.
    Wang S.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2010, 40 (02): : 282 - 284
  • [22] ON A NEW FACTORIZATION ALGORITHM FOR POLYNOMIALS OVER FINITE-FIELDS
    NIEDERREITER, H
    GOTTFERT, R
    MATHEMATICS OF COMPUTATION, 1995, 64 (209) : 347 - 353
  • [23] A NEW ALGORITHM FOR FACTORING POLYNOMIALS OVER FINITE-FIELDS
    CANTOR, DG
    ZASSENHAUS, H
    MATHEMATICS OF COMPUTATION, 1981, 36 (154) : 587 - 592
  • [24] INTERPOLATION OF DATA FROM REDUNDANCIES IN FOURIER-TRANSFORMS OVER FINITE ABELIAN-GROUPS
    KANETKAR, SV
    WAGH, MD
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1980, 26 (02) : 259 - 261
  • [25] RESIDUAL CORRELATION OF FINITE-DIMENSIONAL DISCRETE FOURIER-TRANSFORMS OF STATIONARY SIGNALS - REPLY
    KITAJIMA, H
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1977, 23 (04) : 544 - 544
  • [27] ELLIPTIC CURVES OVER FINITE-FIELDS .2.
    BOROSH, I
    MORENO, CJ
    PORTA, H
    MATHEMATICS OF COMPUTATION, 1975, 29 (131) : 951 - 964
  • [28] A class of minimal cyclic codes over finite fields
    Chen, Bocong
    Liu, Hongwei
    Zhang, Guanghui
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 74 (02) : 285 - 300
  • [29] A class of minimal cyclic codes over finite fields
    Li, Fen
    Cao, Xiwang
    DISCRETE MATHEMATICS, 2017, 340 (01) : 3197 - 3206
  • [30] A class of minimal cyclic codes over finite fields
    Bocong Chen
    Hongwei Liu
    Guanghui Zhang
    Designs, Codes and Cryptography, 2015, 74 : 285 - 300