GAUSSIAN MODEL FOR CHAOTIC INSTABILITY OF HAMILTONIAN FLOWS

被引:98
|
作者
CASETTI, L
LIVI, R
PETTINI, M
机构
[1] UNIV BOLOGNA,DIPARTMENTO FIS,I-40126 BOLOGNA,ITALY
[2] OSSERV ASTROFIS ARCETRI,I-50125 FLORENCE,ITALY
[3] IST NAZL FIS NUCL,I-50125 FLORENCE,ITALY
[4] IST NAZL FIS NUCL,I-40126 BOLOGNA,ITALY
关键词
D O I
10.1103/PhysRevLett.74.375
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general method to describe Hamiltonian chaos in the thermodynamic limit is presented which is based on a model equation independent of the dynamics. This equation is derived from a geometric approach to Hamiltonian chaos recently proposed, and provides an analytic estimate of the largest Lyapunov exponent λ. The particular case of the Fermi-Pasta-Ulam β-model Hamiltonian is considered, showing an excellent agreement between the values of λ predicted by the model and those obtained with computer simulations of the tangent dynamics. © 1995 The American Physical Society.
引用
收藏
页码:375 / 378
页数:4
相关论文
共 50 条
  • [41] On the chaotic diffusion in multidimensional Hamiltonian systems
    Cincotta, P. M.
    Giordano, C. M.
    Marti, J. G.
    Beauge, C.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2018, 130 (01):
  • [42] Regular and chaotic motion in Hamiltonian systems
    Varvoglis, H
    CHAOS AND STABILITY IN PLANETARY SYSTEMS, 2005, 683 : 141 - 184
  • [43] Fractal boundaries in chaotic hamiltonian systems
    Viana, R. L.
    Mathias, A. C.
    Marcus, F. A.
    Kroetz, T.
    Caldas, I. L.
    XVIII BRAZILIAN COLLOQUIUM ON ORBITAL DYNAMICS, 2017, 911
  • [44] INVARIANTS OF CHAOTIC HAMILTONIAN-SYSTEMS
    SITARAM, BR
    PRAMANA-JOURNAL OF PHYSICS, 1995, 44 (04): : 295 - 302
  • [45] Directed chaotic transport in Hamiltonian ratchets
    Schanz, H
    Dittrich, T
    Ketzmerick, R
    PHYSICAL REVIEW E, 2005, 71 (02)
  • [46] Thermodynamics of a simple Hamiltonian chaotic system
    Hasegawa, HH
    DYNAMICAL SYSTEMS AND IRREVERSIBILITY: PROCEEDINGS OF THE XXI SOLVAY CONFERENCE ON PHYSICS, 2002, 122 : 21 - 32
  • [47] Hyperbolicity and stability for Hamiltonian flows
    Bessa, Mario
    Rocha, Jorge
    Torres, Maria Joana
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (01) : 309 - 322
  • [48] EVOLUTION SEMIGROUPS AND HAMILTONIAN FLOWS
    GZYL, H
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 108 (02) : 316 - 332
  • [49] ON HAMILTONIAN FLOWS AND SYMPLECTIC TRANSFORMATIONS
    CLARKE, FH
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1982, 20 (03) : 355 - 359
  • [50] Hamiltonian flows on null curves
    Musso, Emilio
    Nicolodi, Lorenzo
    NONLINEARITY, 2010, 23 (09) : 2117 - 2129