GAUSSIAN MODEL FOR CHAOTIC INSTABILITY OF HAMILTONIAN FLOWS

被引:98
|
作者
CASETTI, L
LIVI, R
PETTINI, M
机构
[1] UNIV BOLOGNA,DIPARTMENTO FIS,I-40126 BOLOGNA,ITALY
[2] OSSERV ASTROFIS ARCETRI,I-50125 FLORENCE,ITALY
[3] IST NAZL FIS NUCL,I-50125 FLORENCE,ITALY
[4] IST NAZL FIS NUCL,I-40126 BOLOGNA,ITALY
关键词
D O I
10.1103/PhysRevLett.74.375
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general method to describe Hamiltonian chaos in the thermodynamic limit is presented which is based on a model equation independent of the dynamics. This equation is derived from a geometric approach to Hamiltonian chaos recently proposed, and provides an analytic estimate of the largest Lyapunov exponent λ. The particular case of the Fermi-Pasta-Ulam β-model Hamiltonian is considered, showing an excellent agreement between the values of λ predicted by the model and those obtained with computer simulations of the tangent dynamics. © 1995 The American Physical Society.
引用
收藏
页码:375 / 378
页数:4
相关论文
共 50 条
  • [31] Baroclinic instability in the Eady model for two coupled flows
    Vic, Armand
    Carton, Xavier
    Gula, Jonathan
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2024, 118 (5-6): : 483 - 510
  • [32] RADIATIVE INSTABILITY OF STRATIFIED SHEAR FLOWS IN THE DRAZIN MODEL
    MAKOV, UN
    STEPANIANTS, UA
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1987, 51 (05): : 621 - 626
  • [33] On instability of the Doi-Edwards model in simple flows
    Kwon, Y
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1999, 88 (1-2) : 89 - 98
  • [34] COAGULATION IN CHAOTIC FLOWS
    MUZZIO, FJ
    OTTINO, JM
    PHYSICAL REVIEW A, 1988, 38 (05): : 2516 - 2524
  • [35] A family of new generalized multi-scroll Hamiltonian conservative chaotic flows on invariant hypersurfaces and FPGA implementation
    Jia, Hongyan
    Liu, Jingwen
    Li, Wei
    Du, Meng
    CHAOS SOLITONS & FRACTALS, 2023, 172
  • [36] On the chaotic diffusion in multidimensional Hamiltonian systems
    P. M. Cincotta
    C. M. Giordano
    J. G. Martí
    C. Beaugé
    Celestial Mechanics and Dynamical Astronomy, 2018, 130
  • [37] Effective Hamiltonian for chaotic coupled oscillators
    Chakraborty, Aniruddha
    Kellman, Michael E.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (17):
  • [38] Chaotic Hamiltonian systems: Survival probability
    Avetisov, V. A.
    Nechaev, S. K.
    PHYSICAL REVIEW E, 2010, 81 (04):
  • [39] Chaotic mixing in noisy Hamiltonian systems
    Kandrup, HE
    Pogorelov, IV
    Sideris, IV
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2000, 311 (04) : 719 - 732
  • [40] CHAOTIC BEHAVIOR OF A HAMILTONIAN WITH A QUARTIC POTENTIAL
    STEEB, WH
    VILLET, CM
    KUNICK, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (16): : 3269 - 3273