SCALAR CURVATURE AND CONFORMAL DEFORMATION OF HYPERBOLIC SPACE

被引:42
|
作者
RATTO, A
RIGOLI, M
VERON, L
机构
[1] UNIV MILAN,DIPARTIMENTO MATEMAT,I-20133 MILAN,ITALY
[2] FAC SCI TOURS,DEPT MATH,F-37200 TOURS,FRANCE
关键词
D O I
10.1006/jfan.1994.1044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (H(m), g(H)), m greater-than-or-equal-to 3, be the m-dimensional hyperbolic space with its Riemannian metric g(H), of sectional curvature - 1; and let K be a smooth function on H(m). In the first part of this article we establish sufficient conditions for K to be-respectively, not to be-the scalar curvature of some complete metric u4/(m-2)g(H) pointwise conformal to g(H). In the second part we prove results for the two-dimensional case, singularity and uniquens questions. (C) 1994 Academic Press, Inc.
引用
收藏
页码:15 / 77
页数:63
相关论文
共 50 条