Conformal deformations of prescribing scalar curvature on Riemannian manifolds with negative curvature

被引:0
|
作者
Hu Zejun
机构
[1] Hangzhou University,Postdoctoral Station of Mathematics
[2] Zhengzhou University,Department of Mathematics
关键词
Conformal deformation; Scalar curvature; Complete metric; Super-subsolution method; 35J60; 53C21; O186.12;
D O I
10.1007/BF02580439
中图分类号
学科分类号
摘要
We study the conformal deformation for prescribing scalar curvature function\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar S$$ \end{document} on Cartan-Hadamard manifoldMn(n≥3) with strongly negative curvature. By employing the supersubsolution method and a careful construction for the supersolution, we obtain the best possible asymptotic behavior for\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar S$$ \end{document} near infinity so that the problem of complete conformal deformation is solvable. In more general cases, we prove an asymptotic estimation on the solutions of the conformal scalar curvature equation.
引用
收藏
页码:361 / 370
页数:9
相关论文
共 50 条