A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint

被引:1
|
作者
Salahi, Maziar [1 ]
Fallahi, Saeed [1 ]
机构
[1] Univ Guilan, Fac Math Sci, Dept Appl Math, Rasht, Iran
关键词
Quadratic fractional optimization; Semidefinite optimization relaxation; Global optimization;
D O I
10.7508/ijmsi.2014.02.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefinite optimization relaxation in polynomial time.
引用
收藏
页码:65 / 71
页数:7
相关论文
共 50 条
  • [41] On the convex hull of convex quadratic optimization problems with indicators
    Linchuan Wei
    Alper Atamtürk
    Andrés Gómez
    Simge Küçükyavuz
    [J]. Mathematical Programming, 2024, 204 : 703 - 737
  • [42] SEMIDEFINITE RELAXATION BOUNDS FOR INDEFINITE HOMOGENEOUS QUADRATIC OPTIMIZATION
    He, Simai
    Luo, Zhi-Quan
    Nie, Jiawang
    Zhang, Shuzhong
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (02) : 503 - 523
  • [43] Canonical Dual Solutions to Quadratic Optimization over One Quadratic Constraint
    Xing, Wenxun
    Fang, Shu-Cherng
    Sheu, Ruey-Lin
    Zhang, Liping
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2015, 32 (01)
  • [44] An SDP approach for quadratic fractional problems with a two-sided quadratic constraint
    Van-Bong Nguyen
    Sheu, Ruey-Lin
    Xia, Yong
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (04): : 701 - 719
  • [45] On some properties of quadratic programs with a convex quadratic constraint
    Lucidi, S
    Palagi, L
    Roma, M
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (01) : 105 - 122
  • [46] Parameter optimization using the L∞ exact penalty function and strictly convex quadratic programming problems
    Fabien, Brian C.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (02) : 833 - 848
  • [47] An Iterative Approach to Quadratic Optimization
    H.K. Xu
    [J]. Journal of Optimization Theory and Applications, 2003, 116 : 659 - 678
  • [48] An iterative approach to quadratic optimization
    Xu, HK
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 116 (03) : 659 - 678
  • [49] Bi-parametric convex quadratic optimization
    Ghaffari-Hadigheh, Alireza
    Romanko, Oleksandr
    Terlaky, Tamas
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2010, 25 (02): : 229 - 245
  • [50] Convex optimization approach to a single quadratically constrained quadratic minimization problem
    Maziar Salahi
    [J]. Central European Journal of Operations Research, 2010, 18 : 181 - 187