QUANTIFICATION OF MODEL UNCERTAINTY FROM DATA

被引:11
|
作者
DEVRIES, DK [1 ]
VANDENHOF, PMJ [1 ]
机构
[1] DELFT UNIV TECHNOL,MECH ENGN SYST & CONTROL GRP,2628 CD DELFT,NETHERLANDS
关键词
IDENTIFICATION; FREQUENCY DOMAIN; MODEL UNCERTAINTY; ROBUST CONTROL;
D O I
10.1002/rnc.4590040206
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Identification of linear models in view of robust control design requires the identification of a control-relevant nominal model, and a quantification of model uncertainty. In this paper a procedure is presented to quantify the model uncertainty of any prespecified nominal model, from a sequence of measurement data of input and output signals from a plant. By employing a nonparametric empirical transfer function estimate (ETFE), we are able to split the model uncertainty into three parts: the inherent uncertainty in the data due to data imperfections, the unmodelled dynamics in the nominal model, and the uncertainty due to interpolation. A frequency-dependent hard error bound is constructed, and results are given for tightening the bound through appropriate input design.
引用
收藏
页码:301 / 319
页数:19
相关论文
共 50 条
  • [1] Quantification of Model Risk: Data Uncertainty
    Krajcovicova, Z.
    Perez-Velasco, P. P.
    Vazquez, C.
    [J]. GEOMETRIC SCIENCE OF INFORMATION, GSI 2017, 2017, 10589 : 523 - 531
  • [2] Optimal uncertainty quantification with model uncertainty and legacy data
    Kamga, P. -H. T.
    Li, B.
    McKerns, M.
    Nguyen, L. H.
    Ortiz, M.
    Owhadi, H.
    Sullivan, T. J.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2014, 72 : 1 - 19
  • [3] Automated uncertainty quantification analysis using a system model and data
    Nannapaneni, Saideep
    Mahadevan, Sankaran
    Lechevalier, David
    Narayanan, Anantha
    Rachuri, Sudarsan
    [J]. PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 1408 - 1417
  • [4] Uncertainty Quantification in the Presence of Limited Climate Model Data with Discontinuities
    Sargsyan, Khachik
    Safta, Cosmin
    Debusschere, Bert
    Najm, Habib
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2009), 2009, : 241 - 247
  • [5] Derivation and Uncertainty Quantification of a Data-Driven Subcooled Boiling Model
    Soibam, Jerol
    Rabhi, Achref
    Aslanidou, Ioanna
    Kyprianidis, Konstantinos
    Bel Fdhila, Rebei
    [J]. ENERGIES, 2020, 13 (22)
  • [6] Uncertainty quantification in Bayesian inverse problems with model and data dimension reduction
    Grana, Dario
    Passos De Figueiredo, Leandro
    Azevedo, Leonardo
    [J]. Geophysics, 2019, 84 (06):
  • [7] An Integrated Uncertainty Quantification Model for Longitudinal and Time-to-Event Data
    Huh, Ye Kwon
    Kim, Minhee
    Liu, Kaibo
    Zhou, Shiyu
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024,
  • [8] Uncertainty quantification in Bayesian inverse problems with model and data dimension reduction
    Grana, Dario
    de Figueiredo, Leandro Passos
    Azevedo, Leonardo
    [J]. GEOPHYSICS, 2019, 84 (06) : M15 - M24
  • [9] Data-Driven Model Falsification and Uncertainty Quantification for Fractured Reservoirs
    Junling Fang
    Bin Gong
    Jef Caers
    [J]. Engineering, 2022, 18 (11) : 116 - 128
  • [10] Data-Driven Model Falsification and Uncertainty Quantification for Fractured Reservoirs
    Fang, Junling
    Gong, Bin
    Caers, Jef
    [J]. ENGINEERING, 2022, 18 : 116 - 128