Uncertainty Quantification in the Presence of Limited Climate Model Data with Discontinuities

被引:2
|
作者
Sargsyan, Khachik [1 ]
Safta, Cosmin [1 ]
Debusschere, Bert [1 ]
Najm, Habib [1 ]
机构
[1] Sandia Natl Labs, Livermore, CA 94550 USA
关键词
uncertainty quantification; climate models; polynomial chaos; discontinuity detection; Bayesian inference; Rosenblatt transformation; OCEAN CIRCULATION;
D O I
10.1109/ICDMW.2009.111
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Uncertainty quantification in climate models is challenged by the sparsity of the available climate data due to the high computational cost of the model runs. Another feature that prevents classical uncertainty analyses from being easily applicable is the bifurcative behavior in the climate data with respect to certain parameters. A typical example is the Meridional Overturning Circulation in the Atlantic Ocean. The maximum overturning stream function exhibits discontinuity across a curve in the space of two uncertain parameters, namely climate sensitivity and CO2 forcing. We develop a methodology that performs uncertainty quantification in this context in the presence of limited data.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 50 条
  • [1] Uncertainty quantification for regional climate model experiments
    Sain, Stephan R.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [2] Quantification of Model Risk: Data Uncertainty
    Krajcovicova, Z.
    Perez-Velasco, P. P.
    Vazquez, C.
    [J]. GEOMETRIC SCIENCE OF INFORMATION, GSI 2017, 2017, 10589 : 523 - 531
  • [3] QUANTIFICATION OF MODEL UNCERTAINTY FROM DATA
    DEVRIES, DK
    VANDENHOF, PMJ
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1994, 4 (02) : 301 - 319
  • [4] Optimal uncertainty quantification with model uncertainty and legacy data
    Kamga, P. -H. T.
    Li, B.
    McKerns, M.
    Nguyen, L. H.
    Ortiz, M.
    Owhadi, H.
    Sullivan, T. J.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2014, 72 : 1 - 19
  • [5] A multivariate interval approach for inverse uncertainty quantification with limited experimental data
    Faes, Matthias
    Broggi, Matteo
    Patelli, Edoardo
    Govers, Yves
    Mottershead, John
    Beer, Michael
    Moens, David
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 118 : 534 - 548
  • [6] UNCERTAINTY QUANTIFICATION GIVEN DISCONTINUOUS MODEL RESPONSE AND A LIMITED NUMBER OF MODEL RUNS
    Sargsyan, Khachik
    Safta, Cosmin
    Debusschere, Bert
    Najm, Habib
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (01): : B44 - B64
  • [7] Uncertainty quantification and statistical model validation for an offshore jacket structure panel given limited test data and simulation model
    Min-Yeong Moon
    Hyun-Seok Kim
    Kangsu Lee
    Byoungjae Park
    K.K. Choi
    [J]. Structural and Multidisciplinary Optimization, 2020, 61 : 2305 - 2318
  • [8] Uncertainty quantification and statistical model validation for an offshore jacket structure panel given limited test data and simulation model
    Moon, Min-Yeong
    Kim, Hyun-Seok
    Lee, Kangsu
    Park, Byoungjae
    Choi, K. K.
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 61 (06) : 2305 - 2318
  • [9] Impact of measurement error and limited data frequency on parameter estimation and uncertainty quantification
    Zadeh, Farkhondeh Khorashadi
    Nossent, Jiri
    Woldegiorgis, Befekadu Taddesse
    Bauwens, Willy
    van Griensven, Ann
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2019, 118 : 35 - 47
  • [10] A probabilistic approach to uncertainty quantification with limited information
    Red-Horse, JR
    Benjamin, AS
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2004, 85 (1-3) : 183 - 190