ON DISTINCT RESIDUES OF FACTORIALS

被引:3
|
作者
Andrejic, Vladica [1 ]
Tatarevic, Milos [1 ]
机构
[1] Univ Belgrade, Fac Math, Belgrade, Serbia
来源
关键词
left factorial; factorial; prime numbers;
D O I
10.2298/PIM1614101A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence of primes p > 5 for which the residues of 2!, 3!,..., ( p - 1)! modulo p are all distinct. We describe the connection between this problem and Kurepa's left factorial function, and report that there are no such primes less than 10(11).
引用
收藏
页码:101 / 106
页数:6
相关论文
共 50 条
  • [1] COMBINING ELEMENTS FROM DISTINCT FINITE FIELDS IN MIXED FACTORIALS
    RAKTOE, BL
    ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (02): : 498 - &
  • [2] Squares and factorials in products of factorials
    Luca, F.
    Saradha, N.
    Shorey, T. N.
    MONATSHEFTE FUR MATHEMATIK, 2014, 175 (03): : 385 - 400
  • [3] Remark on factorials that are products of factorials
    Bhat, K. G.
    Ramachandra, K.
    MATHEMATICAL NOTES, 2010, 88 (3-4) : 317 - 320
  • [4] Squares and factorials in products of factorials
    F. Luca
    N. Saradha
    T. N. Shorey
    Monatshefte für Mathematik, 2014, 175 : 385 - 400
  • [5] Remark on factorials that are products of factorials
    K. G. Bhat
    K. Ramachandra
    Mathematical Notes, 2010, 88 : 317 - 320
  • [6] Sequences of Definite Integrals, Factorials and Double Factorials
    Dana-Picard, Thierry
    JOURNAL OF INTEGER SEQUENCES, 2005, 8 (04)
  • [7] On factorials which are products of factorials
    Luca, Florian
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 143 : 533 - 542
  • [8] Product of Factorials Equal Another Product of Factorials
    Takeda, Wataru
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (05)
  • [9] Fibonacci and Lucas Numbers of Factorials and Factorials of Fibonacci and Lucas
    Phunphayap, Phakhinkon
    Khemaratchatakumthorn, Tammatada
    Sumritnorrapong, Patcharee
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (01): : 11 - 19
  • [10] Cancellation of factorials
    Zudilin, VV
    SBORNIK MATHEMATICS, 2001, 192 (7-8) : 1181 - 1207