ON DISTINCT RESIDUES OF FACTORIALS

被引:3
|
作者
Andrejic, Vladica [1 ]
Tatarevic, Milos [1 ]
机构
[1] Univ Belgrade, Fac Math, Belgrade, Serbia
来源
关键词
left factorial; factorial; prime numbers;
D O I
10.2298/PIM1614101A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence of primes p > 5 for which the residues of 2!, 3!,..., ( p - 1)! modulo p are all distinct. We describe the connection between this problem and Kurepa's left factorial function, and report that there are no such primes less than 10(11).
引用
收藏
页码:101 / 106
页数:6
相关论文
共 50 条
  • [31] A divisibility property of factorials
    Martin, R
    AMERICAN MATHEMATICAL MONTHLY, 2003, 110 (02): : 158 - 158
  • [32] FACTORIALS AND THE RAMANUJAN FUNCTION
    Bravo, Jhon J.
    Luca, Florian
    GLASGOW MATHEMATICAL JOURNAL, 2016, 58 (01) : 177 - 185
  • [33] Waring problem with factorials
    Garaev, MZ
    Luca, F
    Shparlinski, IE
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2005, 71 (02) : 259 - 264
  • [34] (n, k)-FACTORIALS
    Mubeen, Shahid
    Rehman, Abdur
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2014, 5 (03): : 14 - 20
  • [35] SOME INEQUALITIES FOR FACTORIALS
    KING, AC
    MATHEMATICAL GAZETTE, 1984, 68 (445): : 206 - 208
  • [36] Compact integers and factorials
    Shevelev, Vladimir
    ACTA ARITHMETICA, 2007, 126 (03) : 195 - 236
  • [37] Baking a Pi with Factorials
    Zacharias, John B.
    AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (09): : 847 - 847
  • [38] Factorials as repdigits in base b
    Irmak, Nurettin
    Togbe, Alain
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2022, 28 (01) : 21 - 25
  • [39] ASYMMETRICAL FACTORIALS IN INCOMPLETE BLOCKS
    SHAH, BV
    BIOMETRICS, 1961, 17 (01) : 176 - &
  • [40] On Boole's formula for factorials
    Alzer, Horst
    Chapman, Robin
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 59 : 333 - 336