Remark on factorials that are products of factorials

被引:3
|
作者
Bhat, K. G. [1 ]
Ramachandra, K. [1 ]
机构
[1] Indian Inst Sci, Bangalore, Karnataka, India
关键词
factorial; product of factorials; Stirling's formula; prime factor;
D O I
10.1134/S0001434610090038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a paper published in 1993, Erdos proved that if n! = a! b!, where 1 < a a parts per thousand currency sign b, then the difference between n and b does not exceed 5 log log n for large enough n. In the present paper, we improve this upper bound to ((1 + epsilon)/ log 2) log log n and generalize it to the equation a (1)!a (2)! ... a (k) ! = n!. In a recent paper, F. Luca proved that n - b = 1 for large enough n provided that the ABC-hypothesis holds.
引用
收藏
页码:317 / 320
页数:4
相关论文
共 50 条
  • [1] Remark on factorials that are products of factorials
    K. G. Bhat
    K. Ramachandra
    Mathematical Notes, 2010, 88 : 317 - 320
  • [2] Squares and factorials in products of factorials
    Luca, F.
    Saradha, N.
    Shorey, T. N.
    MONATSHEFTE FUR MATHEMATIK, 2014, 175 (03): : 385 - 400
  • [3] Squares and factorials in products of factorials
    F. Luca
    N. Saradha
    T. N. Shorey
    Monatshefte für Mathematik, 2014, 175 : 385 - 400
  • [4] On factorials which are products of factorials
    Luca, Florian
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 143 : 533 - 542
  • [5] On products of factorials
    Mackinnon, Nick
    MATHEMATICAL GAZETTE, 2015, 99 (544): : 144 - 149
  • [6] Products of three factorials
    Dujella, Andrej
    Najman, Filip
    Saradha, N.
    Shorey, Tarlok N.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 85 (1-2): : 123 - 130
  • [7] On Tribonacci Numbers that are Products of Factorials
    Alahmadi, Adel
    Luca, Florian
    JOURNAL OF INTEGER SEQUENCES, 2023, 26 (02)
  • [8] Products of factorials which are powers
    Berczes, A.
    Dujella, A.
    Hajdu, L.
    Saradha, N.
    Tijdeman, R.
    ACTA ARITHMETICA, 2019, 190 (04) : 339 - 350
  • [9] Products of factorials in Smarandache type expressions
    Luca, F
    FIRST INTERNATIONAL CONFERENCE ON SMARANDACHE TYPE NOTIONS IN NUMBER THEORY, PROCEEDINGS, 1997, : 13 - 25
  • [10] Sequences of Definite Integrals, Factorials and Double Factorials
    Dana-Picard, Thierry
    JOURNAL OF INTEGER SEQUENCES, 2005, 8 (04)