Remark on factorials that are products of factorials

被引:3
|
作者
Bhat, K. G. [1 ]
Ramachandra, K. [1 ]
机构
[1] Indian Inst Sci, Bangalore, Karnataka, India
关键词
factorial; product of factorials; Stirling's formula; prime factor;
D O I
10.1134/S0001434610090038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a paper published in 1993, Erdos proved that if n! = a! b!, where 1 < a a parts per thousand currency sign b, then the difference between n and b does not exceed 5 log log n for large enough n. In the present paper, we improve this upper bound to ((1 + epsilon)/ log 2) log log n and generalize it to the equation a (1)!a (2)! ... a (k) ! = n!. In a recent paper, F. Luca proved that n - b = 1 for large enough n provided that the ABC-hypothesis holds.
引用
收藏
页码:317 / 320
页数:4
相关论文
共 50 条
  • [21] Radicals and Factorials!
    Batinetu-Giurgiu, D. M.
    Stanciu, Neculai
    FIBONACCI QUARTERLY, 2015, 53 (03): : 273 - 274
  • [22] A congruence for factorials
    Clarke, F
    Jones, C
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 : 553 - 558
  • [23] Factorials and textures
    Corbit, D
    Collantes-Bellido, R
    DR DOBBS JOURNAL, 1996, 21 (12): : 118 - +
  • [24] ODD FACTORIALS
    STENGER, A
    AMERICAN MATHEMATICAL MONTHLY, 1976, 83 (05): : 383 - 384
  • [25] PARALLEL FLATS FRACTIONS OF RESOLUTION-V FOR THE 34-FACTORIALS,35-FACTORIALS,36-FACTORIALS
    ANDERSON, DA
    MARDEKIAN, J
    BIOMETRICS, 1979, 35 (04) : 883 - 883
  • [26] An Introduction to Gauss Factorials
    Cosgrave, John B.
    Dilcher, Karl
    AMERICAN MATHEMATICAL MONTHLY, 2011, 118 (09): : 812 - 829
  • [27] TRIANGLE OF TRIANGULAR FACTORIALS
    HOGGATT, VE
    BRUCKMAN, PS
    FREITAG, HT
    GARFIELD, R
    LINDSTROM, PA
    PECK, CBA
    PRIELIPP, B
    SHANNON, AG
    SINGH, S
    SMITH, P
    WULCZYN, G
    FIBONACCI QUARTERLY, 1979, 17 (04): : 373 - 373
  • [28] On the ultimate complexity of factorials
    Cheng, Q
    STACS 2003, PROCEEDINGS, 2003, 2607 : 157 - 166
  • [29] Uniformity in fractional factorials
    Fang, KT
    Ma, CX
    Mukerjee, R
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, 2002, : 232 - 241
  • [30] A sum containing factorials
    Samoletov, AA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 131 (1-2) : 503 - 504