FLOWGRAPHS FOR REPRESENTATION OF NONLINEAR SYSTEMS

被引:2
|
作者
BICKART, TA
机构
来源
IRE TRANSACTIONS ON CIRCUIT THEORY | 1961年 / CT 8卷 / 01期
关键词
D O I
10.1109/TCT.1961.1086741
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页码:49 / &
相关论文
共 50 条
  • [21] H∞ synthesis of nonlinear feedback systems in a Volterra representation
    Glass, JW
    Franchek, MA
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2002, 124 (03): : 382 - 389
  • [22] Lotka-volterra representation of general nonlinear systems
    HernandezBermejo, B
    Fairen, V
    MATHEMATICAL BIOSCIENCES, 1997, 140 (01) : 1 - 32
  • [23] The local representation of incrementally scattering passive nonlinear systems
    Singh, Shantanu
    Weiss, George
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2024, : 81 - 112
  • [24] Koopman analysis of nonlinear systems with a neural network representation
    Chufan Li
    Yueheng Lan
    Communications in Theoretical Physics, 2022, 74 (09) : 183 - 193
  • [25] REPRESENTATION OF SIMULTANEOUSLY REACHABLE SETS IN NONLINEAR SYSTEMS.
    Rudenko, A.V.
    Soviet automatic control, 1980, 13 (05): : 36 - 41
  • [26] Koopman analysis of nonlinear systems with a neural network representation
    Li, Chufan
    Lan, Yueheng
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2022, 74 (09)
  • [27] Passive-Active Flowgraphs for Efficient Modeling and Design of Signal Processing Systems
    Lee, Yaesop
    Liu, Yanzhou
    Desnos, Karol
    Barford, Lee
    Bhattacharyya, Shuvra S.
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2020, 92 (10): : 1133 - 1151
  • [28] Passive-Active Flowgraphs for Efficient Modeling and Design of Signal Processing Systems
    Yaesop Lee
    Yanzhou Liu
    Karol Desnos
    Lee Barford
    Shuvra S. Bhattacharyya
    Journal of Signal Processing Systems, 2020, 92 : 1133 - 1151
  • [29] Hamiltonian problems for reducible flowgraphs
    Vernet, O
    Markenzon, L
    XVII INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY, PROCEEDINGS, 1997, : 264 - 267
  • [30] REPRESENTATION OF CONTINUOUS SOLUTIONS FOR SYSTEMS OF NONLINEAR FUNCTIONAL-EQUATIONS
    PELYUKH, GP
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1986, (03): : 17 - 20