Combinatorial computation of the motivic Poincare series

被引:6
|
作者
Gorsky, E. [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
来源
JOURNAL OF SINGULARITIES | 2011年 / 3卷
关键词
D O I
10.5427/jsing.2011.3d
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an explicit algorithm computing the motivic generalization of the Poincare series of a plane curve singularity introduced by A. Campillo, F. Delgado and S. Gusein-Zade. It is done in terms of the embedded resolution. The result is a rational function depending of the parameter q, at q = 1 it coincides with the Alexander polynomial of the corresponding link. For irreducible curves we relate this invariant to the Heegaard-Floer knot homology constructed by P. Ozsvath and Z. Szabo. Many explicit examples are considered.
引用
收藏
页码:48 / 82
页数:35
相关论文
共 50 条