Wave computation on the Poincare dodecahedral space

被引:1
|
作者
Bachelot-Motet, Agnes [1 ]
机构
[1] Univ Bordeaux, Inst Math, CNRS, UMR 5251, F-33405 Talence, France
关键词
SPHERICAL SPACES; GLOBAL TOPOLOGY; UNIVERSE; EIGENMODES; EQUATIONS; CIRCLES;
D O I
10.1088/0264-9381/30/23/235010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We compute the waves propagating on a compact 3-manifold of constant positive curvature with a non-trivial topology: the Poincare dodecahedral space that is a plausible model of multi-connected universe. We transform the Cauchy problem to a mixed problem posed on a fundamental domain determined by the quaternionic calculus. We adopt a variational approach using a space of finite elements that is invariant under the action of the binary icosahedral group. The computation of the transient waves is validated with their spectral analysis by computing a lot of eigenvalues of the Laplace-Beltrami operator.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Poincare dodecahedral space parameter estimates
    Roukema, B. F.
    Bulinski, Z.
    Gaudin, N. E.
    [J]. ASTRONOMY & ASTROPHYSICS, 2008, 492 (03): : 657 - 673
  • [2] A new analysis of the Poincare dodecahedral space model
    Caillerie, S.
    Lachieze-Rey, M.
    Luminet, J. -P.
    Lehoucq, R.
    Riazuelo, A.
    Weeks, J.
    [J]. ASTRONOMY & ASTROPHYSICS, 2007, 476 (02) : 691 - 696
  • [3] DOES GRAVITY PREFER THE POINCARE DODECAHEDRAL SPACE?
    Roukema, Boudewijn F.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2009, 18 (14): : 2237 - 2241
  • [4] Orbifold construction of the modes of the Poincare dodecahedral space
    Lachieze-Rey, Marc
    Weeks, Jeffrey
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (29)
  • [5] The size of the Universe according to the Poincare dodecahedral space hypothesis
    Roukema, B. F.
    Kazimierczak, T. A.
    [J]. ASTRONOMY & ASTROPHYSICS, 2011, 533
  • [6] The residual gravity acceleration effect in the Poincare dodecahedral space
    Roukema, B. F.
    Rozanski, P. T.
    [J]. ASTRONOMY & ASTROPHYSICS, 2009, 502 (01) : 27 - 35
  • [7] The shape and the size of the Universe according to the Poincare dodecahedral space hypothesis
    Kazimierczak, T. A.
    [J]. ADVANCES IN ASTRONOMY AND SPACE PHYSICS, 2012, 2 (01): : 60 - 62
  • [8] A test of the Poincare dodecahedral space topology hypothesis with the WMAP CMB data
    Lew, B.
    Roukema, B.
    [J]. ASTRONOMY & ASTROPHYSICS, 2008, 482 (03) : 747 - U20
  • [9] HARMONIC POLYNOMIALS ON THE POINCARE DODECAHEDRAL THREE-MANIFOLD
    Kramer, Peter
    [J]. JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2006, 6 : 55 - 66
  • [10] Eigenmodes of dodecahedral space
    Lachièze-Rey, M
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (09) : 2455 - 2464