Wave computation on the Poincare dodecahedral space

被引:1
|
作者
Bachelot-Motet, Agnes [1 ]
机构
[1] Univ Bordeaux, Inst Math, CNRS, UMR 5251, F-33405 Talence, France
关键词
SPHERICAL SPACES; GLOBAL TOPOLOGY; UNIVERSE; EIGENMODES; EQUATIONS; CIRCLES;
D O I
10.1088/0264-9381/30/23/235010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We compute the waves propagating on a compact 3-manifold of constant positive curvature with a non-trivial topology: the Poincare dodecahedral space that is a plausible model of multi-connected universe. We transform the Cauchy problem to a mixed problem posed on a fundamental domain determined by the quaternionic calculus. We adopt a variational approach using a space of finite elements that is invariant under the action of the binary icosahedral group. The computation of the transient waves is validated with their spectral analysis by computing a lot of eigenvalues of the Laplace-Beltrami operator.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] SPACE TIME ON THE POINCARE DIAGRAMS
    林金
    Applied Mathematics and Mechanics(English Edition), 1990, (09) : 835 - 847
  • [22] The Poincare space of a C*-algebra
    Andruchow, Esteban
    Corach, Gustavo
    Recht, Lazaro
    ACTA SCIENTIARUM MATHEMATICARUM, 2022, 88 (1-2): : 131 - 187
  • [23] POINCARE SPHERE SAMPLE SPACE
    HEIN, CA
    FOUNDATIONS OF PHYSICS, 1977, 7 (7-8) : 597 - 608
  • [24] Sharp Poincare Hardy and Poincare Rellich inequalities on the hyperbolic space
    Berchio, Elvise
    Ganguly, Debdip
    Grillo, Gabriele
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (04) : 1661 - 1703
  • [25] A Poincare series on hyperbolic space
    Basak, Tathagata
    ADVANCES IN APPLIED MATHEMATICS, 2018, 95 : 177 - 198
  • [26] POINCARE PROBLEM FOR STEIN SPACE
    BANICA, C
    STANASIL.O
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1969, 47 (1-2): : 25 - &
  • [27] THE COMPUTATION OF WAVE FUNCTIONS IN MOMENTUM SPACE .1. THE HELIUM ATOM
    MCWEENY, R
    COULSON, CA
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION A, 1949, 62 (356): : 509 - 518
  • [28] A Fast Algorithm for Computation of Electromagnetic Wave Propagation in Half-Space
    Liao, Shaolin
    Vernon, Ronald J.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (07) : 2068 - 2075
  • [29] An invariant operator due to F Klein quantizes H Poincare's dodecahedral 3-manifold
    Kramer, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (16): : 3517 - 3540
  • [30] Poincare-lighthill-kuo method and symbolic computation
    Dai Shi-qiang
    Applied Mathematics and Mechanics, 2001, 22 (3) : 261 - 269