Bayesian inference on multivariate asymmetric jump-diffusion models

被引:1
|
作者
Lee, Youngeun [1 ]
Park, Taeyoung [1 ]
机构
[1] Yonsei Univ, Dept Appl Stat, 50 Yonsei Ro, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
Bayesian analysis; collapsed Gibbs sampler; data augmentation; Markov Chain Monte Carlo; multivariate asymmetric Laplace distribution;
D O I
10.5351/KJAS.2016.29.1.099
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Asymmetric jump-diffusion models are effectively used to model the dynamic behavior of asset prices with abrupt asymmetric upward and downward changes. However, the estimation of their extension to the multivariate asymmetric jump-diffusion model has been hampered by the analytically intractable likelihood function. This article confronts the problem using a data augmentation method and proposes a new Bayesian method for a multivariate asymmetric Laplace jump-diffusion model. Unlike the previous models, the proposed model is rich enough to incorporate all possible correlated jumps as well as mention individual and common jumps. The proposed model and methodology are illustrated with a simulation study and applied to daily returns for the KOSPI, S&P500, and Nikkei225 indices data from January 2005 to September 2015.
引用
收藏
页码:99 / 112
页数:14
相关论文
共 50 条
  • [31] On the calibration of local jump-diffusion asset price models
    Kindermann, S.
    Mayer, P. A.
    [J]. FINANCE AND STOCHASTICS, 2011, 15 (04) : 685 - 724
  • [32] Continuity Correction for Barrier Options in Jump-Diffusion Models
    Dia, El Hadj Aly
    Lamberton, Damien
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2011, 2 (01): : 866 - 900
  • [33] Convexity preserving jump-diffusion models for option pricing
    Ekstrom, Erik
    Tysk, Johan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (01) : 715 - 728
  • [34] Numerical solution of jump-diffusion LIBOR market models
    Glasserman, P
    Merener, N
    [J]. FINANCE AND STOCHASTICS, 2003, 7 (01) : 1 - 27
  • [35] System Uncertainty and Statistical Detection for Jump-diffusion Models
    Huang, Jianhui
    Li, Xun
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (03) : 697 - 702
  • [36] On the calibration of local jump-diffusion asset price models
    S. Kindermann
    P. A. Mayer
    [J]. Finance and Stochastics, 2011, 15 : 685 - 724
  • [37] On the construction of non-affine jump-diffusion models
    Gapeev, Pavel V.
    Stoev, Yavor I.
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (05) : 900 - 918
  • [38] Pricing options in jump-diffusion models: An extrapolation approach
    Feng, Liming
    Linetsky, Vadim
    [J]. OPERATIONS RESEARCH, 2008, 56 (02) : 304 - 325
  • [39] Numerical solution of jump-diffusion LIBOR market models
    Paul Glasserman
    Nicolas Merener
    [J]. Finance and Stochastics, 2003, 7 : 1 - 27
  • [40] Ensemble Methods for Jump-Diffusion Models of Power Prices
    Mari, Carlo
    Baldassari, Cristiano
    [J]. ENERGIES, 2021, 14 (08)