On the calibration of local jump-diffusion asset price models

被引:4
|
作者
Kindermann, S. [2 ]
Mayer, P. A. [1 ]
机构
[1] Graz Univ Technol, Dept Math, A-8010 Graz, Austria
[2] Johannes Kepler Univ Linz, Ind Math Inst, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
Local Levy model; Jump diffusion processes; Ill-posed problem; Robust calibration; Inverse problem; Tikhonov regularization; CONVERGENCE-RATES; INTEGRODIFFERENTIAL EQUATIONS; TIKHONOV REGULARIZATION; BANACH-SPACES; OPTION PRICES; VOLATILITY; ARBITRAGE;
D O I
10.1007/s00780-011-0159-7
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We consider the inverse problem of calibrating a localized jump-diffusion process to given option price data. It is shown that applying Tikhonov regularization to the originally ill-posed problem yields a well-posed optimization problem. For the solution of the latter, i.e., the calibrated (infinite-dimensional) parameter of the process, we prove the stability and furthermore obtain convergence results. The work-horse for these proofs is the forward partial integro-differential equation associated to the European call price. Moreover, by providing a precise link between the parameters and the corresponding asset price models, we are able to carry over the stability and convergence results to the associated asset price models and hence to the model prices of exotic derivatives. Finally we indicate some possible applications.
引用
收藏
页码:685 / 724
页数:40
相关论文
共 50 条
  • [1] On the calibration of local jump-diffusion asset price models
    S. Kindermann
    P. A. Mayer
    [J]. Finance and Stochastics, 2011, 15 : 685 - 724
  • [2] A splitting strategy for the calibration of jump-diffusion models
    Vinicius V. L. Albani
    Jorge P. Zubelli
    [J]. Finance and Stochastics, 2020, 24 : 677 - 722
  • [3] A splitting strategy for the calibration of jump-diffusion models
    Albani, Vinicius V. L.
    Zubelli, Jorge P.
    [J]. FINANCE AND STOCHASTICS, 2020, 24 (03) : 677 - 722
  • [4] Jump-diffusion international asset allocation
    Sung, Jaeyoung
    [J]. MATHEMATICS AND FINANCIAL ECONOMICS, 2016, 10 (03) : 295 - 319
  • [5] Jump-diffusion international asset allocation
    Jaeyoung Sung
    [J]. Mathematics and Financial Economics, 2016, 10 : 295 - 319
  • [7] JUMP-DIFFUSION RISK-SENSITIVE ASSET MANAGEMENT II: JUMP-DIFFUSION FACTOR MODEL
    Davis, Mark
    Lleo, Sebastien
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) : 1441 - 1480
  • [8] Dynamic asset allocation with jump-diffusion processes
    Zheng, Yingchun
    Zhang, Shougang
    Yang, Yunfeng
    [J]. 2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 442 - 446
  • [9] A jump-diffusion particle filter for price prediction
    Ntemi, Myrsini
    Kotropoulos, Constantine
    [J]. SIGNAL PROCESSING, 2021, 183
  • [10] Efficient frontier determination for dynamic investing policies: Jump-diffusion driven asset price model
    Kolmanovsky, I
    Maizenberg, TL
    [J]. PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 4250 - 4255