Adaptive Estimation of Heteroscedastic Linear Regression Model Using Probability Weighted Moments

被引:0
|
作者
Muhammad, Faqir [1 ]
Aslam, Muhammad [2 ]
Pasha, G. R. [2 ]
机构
[1] Allama Iqbal Open Univ, Dept Math & Stat, Islamabad, Pakistan
[2] Bahauddin Zakariya Univ, Dept Stat, Multan, Pakistan
关键词
Adaptive estimator; estimated weighted least squares; heteroscedasticity; probability weighted moments;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An adaptive estimator is presented by using probability weighted moments as weights rather than conventional estimates of variances for unknown heteroscedastic errors while estimating a heteroscedastic linear regression model. Empirical studies of the data generated by simulations for normal, uniform, and logistically distributed error terms support our proposed estimator to be quite efficient, especially for small samples.
引用
收藏
页码:501 / 505
页数:5
相关论文
共 50 条