A robust, adaptive M-estimator for pointwise estimation in heteroscedastic regression

被引:11
|
作者
Chichignoud, Michael [1 ]
Lederer, Johannes [1 ]
机构
[1] ETH, Seminar Stat, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
adaptation; Huber contrast; Lepski's method; M-estimation; minimax estimation; nonparametric regression; pointwise estimation; robust estimation; CONVERGENCE; ADAPTATION; MINIMAX; NORM;
D O I
10.3150/13-BEJ533
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a robust and fully adaptive method for pointwise estimation in heteroscedastic regression. We allow for noise and design distributions that are unknown and fulfill very weak assumptions only. In particular, we do not impose moment conditions on the noise distribution. Moreover, we do not require a positive density for the design distribution. In a first step, we study the consistency of locally polynomial M-estimators that consist of a contrast and a kernel. Afterwards, minimax results are established over uni-dimensional Holder spaces for degenerate design. We then choose the contrast and the kernel that minimize an empirical variance term and demonstrate that the corresponding M-estimator is adaptive with respect to the noise and design distributions and adaptive (Huber) minimax for contamination models. In a second step, we additionally choose a data-driven bandwidth via Lepski's method. This leads to an M-estimator that is adaptive with respect to the noise and design distributions and, additionally, adaptive with respect to the smoothness of an isotropic, multivariate, locally polynomial target function. These results are also extended to anisotropic, locally constant target functions. Our data-driven approach provides, in particular, a level of robustness that adapts to the noise, contamination, and outliers.
引用
收藏
页码:1560 / 1599
页数:40
相关论文
共 50 条
  • [1] REDESCENDING M-ESTIMATOR FOR ROBUST REGRESSION
    Noor-Ul-Amin, Muhammad
    Asghar, Salah Ud Din
    Sanaullah, Aamir
    Shehzad, Muhammad Ahmad
    [J]. JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2018, 11 (02): : 69 - 80
  • [2] Robust Liu estimator for regression based on an M-estimator
    Arslan, O
    Billor, N
    [J]. JOURNAL OF APPLIED STATISTICS, 2000, 27 (01) : 39 - 47
  • [3] Robust local polynomial regression using M-estimator with adaptive bandwidth
    Chan, SC
    Zhang, ZG
    [J]. 2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 3, PROCEEDINGS, 2004, : 333 - 336
  • [4] Robust Liu-type estimator for regression based on M-estimator
    Ertas, Hasan
    Kaciranlar, Selahattin
    Guler, Huseyin
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (05) : 3907 - 3932
  • [5] Doubtful Outliers with Robust Regression of an M-estimator In Cluster Analysis
    Jedi, Muhamad Alias Md
    Adnan, Robiah
    Saffari, Sayed Ehsan
    [J]. MATEMATIKA, 2014, 30 (01) : 59 - 70
  • [6] Robust two parameter ridge M-estimator for linear regression
    Ertas, Hasan
    Toker, Selma
    Kaciranlar, Selahattin
    [J]. JOURNAL OF APPLIED STATISTICS, 2015, 42 (07) : 1490 - 1502
  • [7] Robust Linearized Ridge M-estimator for Linear Regression Model
    Jadhav, N. H.
    Kashid, D. N.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (03) : 1001 - 1024
  • [8] Adaptive robust M-estimator for nonparametric nonlinear system identification
    UOP Inc, Des Plaines, United States
    [J]. J Process Control, 4 (233-239):
  • [9] An M-estimator for high breakdown robust estimation in computer vision
    Hoseinnezhad, Reza
    Bab-Hadiashar, Alireza
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2011, 115 (08) : 1145 - 1156
  • [10] An adaptive robust M-estimator for nonparametric nonlinear system identification
    Wu, XC
    Cinar, A
    [J]. JOURNAL OF PROCESS CONTROL, 1996, 6 (04) : 233 - 239