SPECIALIZED MOBIUS INVERSION

被引:3
|
作者
CARLITZ, L
机构
关键词
D O I
10.1016/0097-3165(78)90057-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:261 / 277
页数:17
相关论文
共 50 条
  • [41] A FURTHER GENERALIZATION OF THE MODIFIED MOBIUS-INVERSION FORMULA
    LI, BZ
    [J]. CHINESE SCIENCE BULLETIN, 1992, 37 (14): : 1220 - 1223
  • [42] Proof of a conjectured Mobius inversion formula for Grothendieck polynomials
    Pechenik, Oliver
    Satriano, Matthew
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (05):
  • [43] Mobius inversion of surfaces in the Minkowski 3-space
    Fernandes, Marco Antonio do Couto
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2023, 190
  • [44] Computing coefficients of wavelet series by Mobius inversion formula
    Chen, ZD
    Chen, NX
    [J]. PROGRESS IN NATURAL SCIENCE, 1997, 7 (02): : 163 - 171
  • [45] STRICTLY INCREASING SEQUENCES OF INTEGERS AND THE MOBIUS INVERSION FORMULA
    Schwab, Emil Daniel
    [J]. JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2008, 11 (01): : 1 - 14
  • [46] CLUSTER VARIATION METHOD AND MOBIUS-INVERSION FORMULA
    MORITA, T
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (3-4) : 819 - 825
  • [47] An extension of Fleck-type Mobius function and inversion
    Chou, Wun-Seng
    Hsu, Leetsch C.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (06) : 1807 - 1819
  • [48] Fractional Fourier Analysis Using the Mobius Inversion Formula
    Miao, Hongxia
    Zhang, Feng
    Tao, Ran
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (12) : 3181 - 3196
  • [49] Mobius inversion on a poset of a graph and its acyclic subgraphs
    Babic, D
    Trinajstic, N
    [J]. DISCRETE APPLIED MATHEMATICS, 1996, 67 (1-3) : 5 - 11
  • [50] Mobius inversion on a multiplicative semigroup and inverse lattice problems in physics
    Chen, ZD
    Shen, YN
    Liu, SJ
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1998, 21 (03) : 269 - 279