Triangular billiard in a constant field

被引:0
|
作者
Maslovsky, Yu. N. [1 ]
Slipushenko, S. V. [1 ]
Tur, A. V. [3 ]
Yanovsky, V. V. [1 ,2 ]
机构
[1] Natl Acad Sci Ukraine, Inst Single Crystals, STC Inst Single Crystals, UA-61001 Kharkov, Ukraine
[2] V Karazin Kharkiv Natl Univ, UA-61022 Kharkov, Ukraine
[3] Univ Toulouse UPS, CNRS, Inst Rech Astrophys & Planetol, F-31028 Toulouse 4, France
来源
FUNCTIONAL MATERIALS | 2015年 / 22卷 / 02期
关键词
triangular billiard; charged particles; constant field; phase space; dynamical map; nonlinear; chaos;
D O I
10.15407/fm22.02.233
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The motion of a charged particle in a constant field inside the triangular region with elastically reflecting boundary is considered. The natural phase space is introduced and its properties are clarified. The dynamical map defining a motion of point in the phase space is derived analytically. The typical properties of trajectories and characteristic features of the phase portraits are found.
引用
收藏
页码:233 / 244
页数:12
相关论文
共 50 条
  • [41] Constant scallop tool path for triangular surface machining
    Xu J.
    Liu W.
    Bian H.
    Wang H.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2010, 46 (11): : 193 - 198
  • [42] Triangular bezier approximations to constant mean curvature surfaces
    Arnal, A.
    Lluch, A.
    Monterde, J.
    COMPUTATIONAL SCIENCE - ICCS 2008, PT 2, 2008, 5102 : 96 - +
  • [43] An elliptic billiard in a potential force field: classification of motions, topological analysis
    Kobtsev, I. F.
    SBORNIK MATHEMATICS, 2020, 211 (07) : 987 - 1013
  • [44] Topological Analysis of an Elliptic Billiard in a Fourth-Order Potential Field
    S. E. Pustovoitov
    Moscow University Mathematics Bulletin, 2021, 76 : 193 - 205
  • [45] Topological Analysis of an Elliptic Billiard in a Fourth-Order Potential Field
    Pustovoitov, S. E.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2021, 76 (05) : 193 - 205
  • [46] Highly Selective Tilted Triangular Springs with Constant Force Reaction
    Schmitt, Lisa
    Schmitt, Philip
    Hoffmann, Martin
    SENSORS, 2024, 24 (05)
  • [47] Special properties of a skew triangular matrix ring with constant diagonal
    Habibi, Mohammad
    Moussavi, Ahmad
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (03)
  • [48] CONNECTIVE CONSTANT OF THE SELF-AVOIDING WALK ON THE TRIANGULAR LATTICE
    GUTTMANN, AJ
    OSBORN, TR
    SOKAL, AD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (13): : 2591 - 2598
  • [49] Finding a triangular mesh with a constant number of different edge lengths
    Tanigawa, Shin-ichi
    Katoh, Naoki
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2006, E89D (08) : 2364 - 2371
  • [50] Triangular Ising antiferromagnet in a staggered field
    Dhar, A
    Chaudhuri, P
    Dasgupta, C
    PHYSICAL REVIEW B, 2000, 61 (09): : 6227 - 6237