Triangular billiard in a constant field

被引:0
|
作者
Maslovsky, Yu. N. [1 ]
Slipushenko, S. V. [1 ]
Tur, A. V. [3 ]
Yanovsky, V. V. [1 ,2 ]
机构
[1] Natl Acad Sci Ukraine, Inst Single Crystals, STC Inst Single Crystals, UA-61001 Kharkov, Ukraine
[2] V Karazin Kharkiv Natl Univ, UA-61022 Kharkov, Ukraine
[3] Univ Toulouse UPS, CNRS, Inst Rech Astrophys & Planetol, F-31028 Toulouse 4, France
来源
FUNCTIONAL MATERIALS | 2015年 / 22卷 / 02期
关键词
triangular billiard; charged particles; constant field; phase space; dynamical map; nonlinear; chaos;
D O I
10.15407/fm22.02.233
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The motion of a charged particle in a constant field inside the triangular region with elastically reflecting boundary is considered. The natural phase space is introduced and its properties are clarified. The dynamical map defining a motion of point in the phase space is derived analytically. The typical properties of trajectories and characteristic features of the phase portraits are found.
引用
收藏
页码:233 / 244
页数:12
相关论文
共 50 条
  • [21] 'TRIANGULAR FIELD'
    DOBYNS, S
    POETRY, 1981, 139 (01) : 5 - 6
  • [22] NUMERICAL STUDY OF A BILLIARD IN A GRAVITATIONAL-FIELD
    LEHTIHET, HE
    MILLER, BN
    PHYSICA D-NONLINEAR PHENOMENA, 1986, 21 (01) : 93 - 104
  • [23] Entanglement and chaos in a square billiard with a magnetic field
    Novaes, M
    de Aguiar, MAM
    PHYSICAL REVIEW E, 2004, 70 (04):
  • [24] Periodic trajectories of a billiard in the homogenous gravity field
    Polikarpov, S.A.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 2002, (05): : 42 - 45
  • [25] The Sinai billiard, square torus, and field chaos
    Liboff, RL
    Liu, J
    CHAOS, 2000, 10 (04) : 756 - 759
  • [26] Weyl expansion of a circle billiard in a magnetic field
    Narevich, R
    Spehner, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (19): : L227 - L230
  • [27] CONSTANT AMPLITUDE TRIANGULAR WAVE GENERATION
    DESA, E
    SANKARANARAYANAN, PE
    ELECTRONIC ENGINEERING, 1977, 49 (587): : 19 - 19
  • [28] THE EXCITATORY STATE IN THE TRIANGULAR CONSTANT METHOD
    FRIJTERS, JER
    PSYCHOMETRIKA, 1981, 46 (02) : 219 - 222
  • [29] Gaussian unitary ensemble statistics in a time-reversal invariant microwave triangular billiard
    Dembowski, C
    Gräf, HD
    Heine, A
    Rehfeld, H
    Richter, A
    Schmit, C
    PHYSICAL REVIEW E, 2000, 62 (04) : R4516 - R4519
  • [30] Directed chaos in a billiard chain with transversal magnetic field
    Schanz, H
    Prusty, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (47): : 10085 - 10100