EXTREMALS OF THE GENERALIZED EULER-BERNOULLI ENERGY AND APPLICATIONS

被引:0
|
作者
Garay, Oscar J. [1 ]
机构
[1] Univ Basque Country, Fac Ciencia & Tecnol, Dept Matemat, Aptdo 644, E-48080 Bilbao, Spain
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this survey we describe a general method to deal with the variational problem associated to the generalized elastic curves, paying special attention to closed critical curves in real space forms due to its special geometric significance. We illustrate the method by studying particular choices of this energy in some more detail. Finally, we will review also some interesting applications of generalized elasticae to other higher dimensional variational problems in Physics, Biophysics and the Theory of Submanifolds.
引用
收藏
页码:27 / 61
页数:35
相关论文
共 50 条
  • [21] A deformation field for Euler-Bernoulli beams with applications to flexible multibody dynamics
    Shi, P
    McPhee, J
    Heppler, GR
    MULTIBODY SYSTEM DYNAMICS, 2001, 5 (01) : 79 - 104
  • [22] Exact solutions of Euler-Bernoulli beams
    Haider, Jamil Abbas
    Zaman, F. D.
    Lone, Showkat Ahmad
    Anwar, Sadia
    Almutlak, Salmeh A.
    Elseesy, Ibrahim E.
    MODERN PHYSICS LETTERS B, 2023, 37 (33):
  • [23] GENERALIZED SOLUTIONS FOR THE EULER-BERNOULLI MODEL WITH ZENER VISCOELASTIC FOUNDATIONS AND DISTRIBUTIONAL FORCES
    Hoermann, Guenther
    Konjik, Sanja
    Oparnica, Ljubica
    ANALYSIS AND APPLICATIONS, 2013, 11 (02)
  • [24] A note on the exponential decay of energy of a Euler-Bernoulli beam with local viscoelasticity
    Zhao, HL
    Liu, KS
    Liu, ZY
    JOURNAL OF ELASTICITY, 2004, 74 (02) : 175 - 183
  • [25] An Energy Closure Criterion for Model Reduction of a Kicked Euler-Bernoulli Beam
    Bhattacharyya, Suparno
    Cusumano, Joseph P.
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2021, 143 (04):
  • [26] Existence and energy decay of solutions for the Euler-Bernoulli viscoelastic equation with a delay
    Yang, Zhifeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 727 - 745
  • [27] Dynamic analysis of Euler-Bernoulli beam problems using the Generalized Finite Element Method
    Shang, H. Y.
    Machado, R. D.
    Abdalla Filho, J. E.
    COMPUTERS & STRUCTURES, 2016, 173 : 109 - 122
  • [28] Motion Planning for a Damped Euler-Bernoulli Beam
    Meurer, Thomas
    Schroeck, Johannes
    Kugi, Andreas
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 2566 - 2571
  • [29] Modal formulation of segmented Euler-Bernoulli beams
    Copetti, Rosemaira Dalcin
    Claeyssen, Julio C. R.
    Tsukazan, Teresa
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2007, 2007
  • [30] Free vibrations of a complex Euler-Bernoulli beam
    Popplewell, N
    Chang, DQ
    JOURNAL OF SOUND AND VIBRATION, 1996, 190 (05) : 852 - 856