EXTREMALS OF THE GENERALIZED EULER-BERNOULLI ENERGY AND APPLICATIONS

被引:0
|
作者
Garay, Oscar J. [1 ]
机构
[1] Univ Basque Country, Fac Ciencia & Tecnol, Dept Matemat, Aptdo 644, E-48080 Bilbao, Spain
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this survey we describe a general method to deal with the variational problem associated to the generalized elastic curves, paying special attention to closed critical curves in real space forms due to its special geometric significance. We illustrate the method by studying particular choices of this energy in some more detail. Finally, we will review also some interesting applications of generalized elasticae to other higher dimensional variational problems in Physics, Biophysics and the Theory of Submanifolds.
引用
收藏
页码:27 / 61
页数:35
相关论文
共 50 条
  • [11] Energy analysis of multiple-cracked Euler-Bernoulli beam
    Ghadami, Amin
    Maghsoodi, Ameneh
    Mirdamadi, Hamid Reza
    JOURNAL OF VIBROENGINEERING, 2012, 14 (03) : 1399 - 1412
  • [12] Euler-Bernoulli beam with energy dissipation: Spectral properties and control
    Shubov, M.
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING: TECHNIQUES AND APPLICATIONS, 2008, : 257 - 265
  • [13] Spectrum of a network of Euler-Bernoulli beams
    Mercier, D.
    Regnier, V.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) : 174 - 196
  • [14] Control of a network of Euler-Bernoulli beams
    Mercier, D.
    Regnier, V.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 874 - 894
  • [15] New Interpretation of the Euler-Bernoulli Equation
    Filipovic, Mirjana
    Vukobratovic, Miomir
    2008 6TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS, 2008, : 321 - 326
  • [16] Feedback stabiligation of euler-bernoulli becan
    Inst of Systems Science Academia, Sinica, Beijing, China
    Zidonghua Xuebao/Acta Automatica Sinica, 1996, 22 (02): : 135 - 144
  • [17] THE INVERSE PROBLEM FOR THE EULER-BERNOULLI BEAM
    GLADWELL, GML
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 407 (1832): : 199 - 218
  • [18] A family of isospectral Euler-Bernoulli beams
    Gladwell, Graham M. L.
    Morassi, Antonino
    INVERSE PROBLEMS, 2010, 26 (03)
  • [19] Equivalence transformations of the Euler-Bernoulli equation
    Ndogmo, J. C.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) : 2172 - 2177
  • [20] Stabilization of a nonlinear Euler-Bernoulli beam
    Benterki, Djamila
    Tatar, Nasser-Eddine
    ARABIAN JOURNAL OF MATHEMATICS, 2022, 11 (03) : 479 - 496