Application of Fragment Molecular Orbital (FMO) Method to Nano-Bio Field

被引:1
|
作者
Nakano, Tatsuya [1 ,2 ]
Mochizuki, Yuji [2 ,3 ]
Amari, Shinji [4 ]
Kobayashi, Masato [5 ]
Fukuzawa, Kaori [2 ,6 ]
Tanaka, Shigenori [2 ,7 ]
机构
[1] Natl Inst Hlth Sci, Div Med Safety Sci, Setagaya Ku, 1-18-1 Kamiyoga, Tokyo 1588501, Japan
[2] Japan Sci & Technol Agcy, CREST Project, Kawaguchi, Saitama 3320012, Japan
[3] Rikkyo Univ, Fac Sci, Dept Chem, Toshima Ku, Tokyo 1718501, Japan
[4] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538505, Japan
[5] Univ Tokyo, Ctr Collaborat Res, AdvanceSoft, Meguro Ku, Tokyo 1538904, Japan
[6] Mizuho Informat & Res Inst Inc, Chiyoda Ku, Tokyo 1018443, Japan
[7] Kobe Univ, Grad Sch Sci & Technol, Nada Ku, Kobe, Hyogo 6578501, Japan
关键词
Fragment molecular orbital method; MP2; CIS(D); CAFI; VISCANA; ABINIT-MP;
D O I
10.2477/jccj.6.173
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Kitaura et al. (Chem. Phys. Lett. 312, 319-324 (1999)) have proposed an ab initio fragment molecular orbital (FMO) method by which large molecules such as proteins can be easily treated with chemical accuracy. In the ab initio FMO method, a molecule or a molecular cluster is divided into fragments, and the MO calculations on the fragments (monomers) and the fragment pairs (dimers) are performed to obtain the total energy that is expressed as a summation of the fragment energies and inter-fragment interaction energies (IFIEs). In this paper, we provide a brief description of the ab initio FMO method and demonstrate recent applications in the nano-bio field.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 50 条
  • [21] Fragment Molecular Orbital Method-Based Molecular Dynamics (FMO-MD) as a Simulator for Chemical Reactions in Explicit Solvation
    Komeiji, Yuto
    Ishikawa, Takeshi
    Mochizuki, Yuji
    Yamataka, Hiroshi
    Nakano, Tatsuya
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (01) : 40 - 50
  • [22] Effective Fragment Molecular Orbital Method: A Merger of the Effective Fragment Potential and Fragment Molecular Orbital Methods
    Steinmann, Casper
    Fedorov, Dmitri G.
    Jensen, Jan H.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (33): : 8705 - 8712
  • [23] Application of the fragment molecular orbital method for determination of atomic charges on polypeptides
    Okiyama, Yoshio
    Watanabe, Hirofumi
    Fukuzawa, Kaori
    Nakano, Tatsuya
    Mochizuki, Yuji
    Ishikawa, Takeshi
    Tanaka, Shigenori
    Ebina, Kuniyoshi
    CHEMICAL PHYSICS LETTERS, 2007, 449 (4-6) : 329 - 335
  • [24] Fragment Molecular Orbital (FMO) and FMO-MO Calculations of DNA: Accuracy Validation of Energy and Interfragment Interaction Energy
    Watanabe, Toshio
    Inadomi, Yuichi
    Umeda, Hiroaki
    Fukuzawa, Kaori
    Tanaka, Shigenori
    Nakano, Tatsuya
    Nagashima, Umpei
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2009, 6 (06) : 1328 - 1337
  • [25] Acceleration of Environmental Electrostatic Potential Using Cholesky Decomposition with Adaptive Metric (CDAM) for Fragment Molecular Orbital (FMO) Method
    Okiyama, Yoshio
    Nakano, Tatsuya
    Watanabe, Chiduru
    Fukuzawa, Kaori
    Komeiji, Yuto
    Segawa, Katsunori
    Mochizuki, Yuji
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2021, 94 (01) : 91 - 96
  • [26] Application of Localized Surface Plasmon Resonance Spectroscopy to Investigate a Nano-Bio Interface
    Barbir, Rinea
    Pem, Barbara
    Kalcec, Nikolina
    Kastner, Stephan
    Podlesnaia, Katia
    Csaki, Andrea
    Fritzsche, Wolfgang
    Vrcek, Ivana Vinkovic
    LANGMUIR, 2021, 37 (05) : 1991 - 2000
  • [27] Sintered Aluminum-Graphene Nano-Bio Composite Materials for the Medical Application
    Duan, Dapeng
    Li, Baofeng
    Sharma, Parul Kumar
    Pramanik, Monidipa
    Singh, Shashi B.
    Pradhan, Sunil Kumar
    POWDER METALLURGY AND METAL CERAMICS, 2021, 59 (11-12) : 631 - 640
  • [28] Definition of molecular orbitals in fragment molecular orbital method
    Inadomi, Y
    Nakano, T
    Kitaura, K
    Nagashima, U
    CHEMICAL PHYSICS LETTERS, 2002, 364 (1-2) : 139 - 143
  • [29] Nanoparticles for biomedical applications: exploring and exploiting molecular interactions at the nano-bio interface
    Nienhaus, K.
    Wang, H.
    Nienhaus, G. U.
    MATERIALS TODAY ADVANCES, 2020, 5
  • [30] Energy Gradients in Combined Fragment Molecular Orbital and Polarizable Continuum Model (FMO/PCM) Calculation
    Li, Hui
    Fedorov, Dmitri G.
    Nagata, Takeshi
    Kitaura, Kazuo
    Jensen, Jan H.
    Gordon, Mark S.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (04) : 778 - 790