On a class of shift-invariant subspaces of the Drury-Arveson space

被引:3
|
作者
Arcozzi, Nicola [1 ]
Levi, Matteo [1 ]
机构
[1] Univ Bologna, Bologna, Italy
来源
CONCRETE OPERATORS | 2018年 / 5卷 / 01期
关键词
Drury-Arveson space; Von Neumann's inequality; Hankel operators; Invariant subspaces; Reproducing kernel;
D O I
10.1515/conop-2018-0001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the Drury-Arveson space, we consider the subspace of functions whose Taylor coefficients are supported in a set Y subset of N-d with the property that N\X + e(j) subset of N\X for all j = 1,..., d. This is an easy example of shift-invariant subspace, which can be considered as a RKHS in is own right, with a kernel that can be explicitly calculated for specific choices of X. Every such a space can be seen as an intersection of kernels of Hankel operators with explicit symbols. Finally, this is the right space on which Drury's inequality can be optimally adapted to a sub-family of the commuting and contractive operators originally considered by Drury.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [31] MULTIPLIERS AND ESSENTIAL NORM ON THE DRURY-ARVESON SPACE (vol 139, pg 2497, 2011)
    Fang, Quanlei
    Xia, Jingbo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (01) : 363 - 368
  • [32] Finite dimensional backward shift invariant subspaces of Arveson spaces
    Bolotnikov, V
    Rodman, L
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 349 (1-3) : 265 - 282
  • [33] Generalized shift-invariant systems and frames for subspaces
    Christensen, O
    Eldar, YC
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (03) : 299 - 313
  • [34] THE STRUCTURE OF SHIFT-INVARIANT SUBSPACES OF SOBOLEV SPACES
    Aksentijevi'c, A.
    Aleksi'c, S.
    Pilipovi'c, S.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 218 (02) : 177 - 191
  • [35] Symmetric shift-invariant subspaces and harmonic maps
    Aleman, Alexandru
    Pacheco, Rui
    Wood, John C.
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (1-2) : 183 - 202
  • [36] Shift-invariant subspaces and wavelets on local fields
    B. Behera
    Acta Mathematica Hungarica, 2016, 148 : 157 - 173
  • [37] Symmetric shift-invariant subspaces and harmonic maps
    Alexandru Aleman
    Rui Pacheco
    John C. Wood
    Mathematische Zeitschrift, 2021, 299 : 183 - 202
  • [38] Shift-invariant subspaces and wavelets on local fields
    Behera, B.
    ACTA MATHEMATICA HUNGARICA, 2016, 148 (01) : 157 - 173
  • [39] Generalized Shift-Invariant Systems and Frames for Subspaces
    Ole Christensen
    Yonina C. Eldar
    Journal of Fourier Analysis and Applications, 2005, 11 : 299 - 313
  • [40] Invariance of a Shift-Invariant Space
    Aldroubi, Akram
    Cabrelli, Carlos
    Heil, Christopher
    Kornelson, Keri
    Molter, Ursula
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2010, 16 (01) : 60 - 75