On a class of shift-invariant subspaces of the Drury-Arveson space

被引:3
|
作者
Arcozzi, Nicola [1 ]
Levi, Matteo [1 ]
机构
[1] Univ Bologna, Bologna, Italy
来源
CONCRETE OPERATORS | 2018年 / 5卷 / 01期
关键词
Drury-Arveson space; Von Neumann's inequality; Hankel operators; Invariant subspaces; Reproducing kernel;
D O I
10.1515/conop-2018-0001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the Drury-Arveson space, we consider the subspace of functions whose Taylor coefficients are supported in a set Y subset of N-d with the property that N\X + e(j) subset of N\X for all j = 1,..., d. This is an easy example of shift-invariant subspace, which can be considered as a RKHS in is own right, with a kernel that can be explicitly calculated for specific choices of X. Every such a space can be seen as an intersection of kernels of Hankel operators with explicit symbols. Finally, this is the right space on which Drury's inequality can be optimally adapted to a sub-family of the commuting and contractive operators originally considered by Drury.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [21] Geometric Arveson-Douglas conjecture for the Drury-Arveson space: The case of one-dimensional variety
    Xia, Jingbo
    ADVANCES IN MATHEMATICS, 2024, 440
  • [22] SHIFT-INVARIANT SUBSPACES INVARIANT FOR COMPOSITION OPERATORS ON THE HARDY-HILBERT SPACE
    Cowen, Carl C.
    Wahl, Rebecca G.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (12) : 4143 - 4154
  • [24] Sampling for shift-invariant and wavelet subspaces
    Hogan, JA
    Lakey, J
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 : 36 - 47
  • [25] Harmonic maps and shift-invariant subspaces
    Aleman, Alexandru
    Pacheco, Rui
    Wood, John C.
    MONATSHEFTE FUR MATHEMATIK, 2021, 194 (04): : 625 - 656
  • [26] Harmonic maps and shift-invariant subspaces
    Alexandru Aleman
    Rui Pacheco
    John C. Wood
    Monatshefte für Mathematik, 2021, 194 : 625 - 656
  • [27] The Singular Integral Operator Induced by Drury-Arveson Kernel
    Cheng, Guozheng
    Hou, Xiaoyang
    Liu, Chao
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (04) : 917 - 929
  • [28] Closure of dilates of shift-invariant subspaces
    Soto-Bajo, Moises
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (10): : 1785 - 1799
  • [29] NONCOHERENCE OF THE MULTIPLIER ALGEBRA OF THE DRURY-ARVESON SPACE Hn2 FOR n ≥ 3
    Sasane, Amol
    OPERATORS AND MATRICES, 2015, 9 (02): : 407 - 416
  • [30] The Drury-Arveson Space on the Siegel Upper Half-space and a von Neumann Type Inequality
    Arcozzi, Nicola
    Chalmoukis, Nikolaos
    Monguzzi, Alessandro
    Peloso, Marco M.
    Salvatori, Maura
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2021, 93 (06)